Will the Real Arduino Please Stand Up?

The original founders of Arduino—the popular programmable DIY electronics kit—appear to have had a falling out. And that might bring about what could be the world’s first open-source hardware fork, a sort of developer schismthat’s much more common in the software world.

At the moment, two different websites display the Arduino logo and branding. There’s Arduino.cc, Arduino’s original site. Now there’s also Arduino.org, which prominently displays the text “the adventure continues,” as if it has been passed the torch.

Arduino.org is already selling the latest Arduino board model, Zero Pro. Meanwhile, Arduino.cc displays the Zero as “coming soon.” It’s evident that the two websites are operating separately under different guidance.

I’ve attempted to get comment from Arduino for the past week, to no avail. All I got back was a request not to publish an article until Arduino founder, inventor, and CEO Massimo Banzi delivers a statement. Banzi has spoken to the Italian press to refute rumors that he was no longer in charge of the project, but has kept quiet since.

Fork That Hardware

Arduino, of course, isn’t just software code—it’s also a physical microcontroller that runs that code. In order to fork that, both parties would need to have some control over the manufacture of the boards.

Unsurprisingly, in this case they do. Arduino co-founder Gianluca Martino set up a company that has been the main supplier of Arduino products for years. Martino’s company has now changed its name from Smart Projects to Arduino, and launched the Arduino.org site to go with it.

Needless to say, this decision hasn’t gone over well with some of the other founders. Two legal proceedingsa trademark case in the U.S. and a lawsuit in Italy—are currently underway to determine who gets to use the Arduino trademark. In the U.S. case, filed in January 2015 and publicly available on the website of the U.S. Patent and Trademark Office, both companies claim to have been using the Arduino trademark before that other.

As the process continues, makers will still be able to get their hands on Arduino boards, as neither side has ceased production. While Martino is in talks with Panasonic and Bosch to expand Arduino board manufacturing, Banzi is speaking with Intel and has made public his designs to expand Arduino manufacturing even to China.

This possible fork indicates an increasing amount of money to be made in the hardware hacking Internet of Things sector, a potential fortune big enough to drive founders apart. A hardware fork can’t be good for the Arduino brand, but it’s clear from all the lawyering that the schism runs deep.

Looking for a New DIY 3D Printer to Build? Check Out the iTopie’s New Design

BY ·

3dp_itopie_repraplogoWhile more and more people explore and adopt 3D printers and 3D printing technology, they tend to buy popular, pre-manufactured machines like MakerBots and Printrbots.

But the roots of the 3D printing industry have always been in the maker community, going back as far as 2005 when the RepRap Project was founded by Adrian Bowyer. The goal was to develop an open source design for an inexpensive and self-replicating FDM 3D printer, and over the years it has produced hundreds of variant designs, upgrades and evolutions including the original Darwin design, as well as the popular Mendel and Prusa Mendel variants.3dp_itopie_main

When Swiss maker Sébastien Mischler decided to create a RepRap 3D printer workshop at his local maker community, he naturally looked to a pre-existing RepRap design. He started with the Prusa i3, which is a very affordable and widely adopted design, making it relatively easy to source parts and assemble. But he quickly noticed what he considered drawbacks to the design, notably an unstable Z axis. He tried to stabilize the axis with some simple threaded rods, but he found the need to constantly adjust, and readjust them frustrating and ultimately a waste of time. So he decided that since the i3 design required CNC milled parts anyway, he may as well take full advantage and machine as many of his own parts as he could.3dp_itopie_threadedrods

Having already built several variations of RepRap designs Mischler set out to create his own 3D printer that would solve all of the problems that he found troublesome. He started by seeking out videos, images and build logs of all types of 3D printers. He decided that he wanted to keep the design simple, focus on rigidity and avoid any 3D printed parts that could be fully integrated into the design of the printer’s frame. Once he had all of his ideas and research material organised, he did a hand drawn sketch of the design for his iTopie 3D printer and then ultimately turned to SketchUp. He designed the CNC components and generated the G-Code using CamBam.

“If you have access to a CNC, [the iTopie costs] approximately $400. But it can be less or more, depending on the desired final quality. Today there are a lot of providers, take your time to choose yours, looking for information on [the RepRap forums] and ask if you can not find, and eventually share your sources if you find better,” Mischler explained.

3dp_itopie_bedThe iTopie RepRap 3D printer has a generous envelope of 390 x 440 x 440 mm with a respectable print volume of 200 x 200 x 230 mm. Mischler said that he generally prints at a printing speed between 60mm/s and 80mm/s for any high-quality parts, and while it can reach higher speeds the extruder tends to not be able to keep up on anything over 100mm/s. He said that the iTopie is capable of easily printing layers with a resolution of 0.2mm down to 0.1mm. He is certain that it could handle even higher resolutions, but it would slow down the print considerably so he’s found himself too impatient to test it. However, Mischler believes that printing speeds and resolutions are a lot more difficult to determine than most printer manufacturers lead you to believe.

3dp_itopie_side“Resolution, speed, etc., too often I read nonsense about it. I must be honest and say that it depends on too many factors. The quality of materials is essential and all I can tell you for sure is that you have nothing good with low-end hardware. This does not mean it does not work! it just mean you would not have the same results,” Mischler said.

Overall Mischler said that he is quite happy with how his iTopie 3D printer came out. He says that its strengths lay in a simplified assembly design that automatically aligns, requires fewer 3D printed pieces resulting in more stability, and a construction time that can be counted in hours rather than days.

We first heard about the iTopie back in December, and since then Mischler has decided to “increase the visibility” of the printer by posting its files on Thingiverse, which he accepted as having been “inevitable” for the design. The machine looks sturdier now with its machined housing, as well.

You can read more about his 3D printer design and find all the downloadable files over on Thingiverse and then head over to our iTopie RepRap 3D Printer forum thread at 3DPB.com to let us know your thoughts.

DIY Surgery: The Future Of Medicine?

THE OPEN SURGERY MACHINE CONCEPT IS AN OPEN-SOURCE ROBOT THAT CAN PERFORM SIMPLE OPERATIONS IN THE COMFORT OF YOUR HOME.

In 2015, if you need an operation, you go to a hospital. The Open Surgery Machine imagines a future in which getting an appendectomy is as DIY as downloading a template from Thingsverse and firing up your MakerBot: an open-source robot surgeon in a box that is capable of performing simple, low-cost operations safely and with little doctor intervention.

Frank Kolkman is a Dutch-born interaction designer who recently graduated from London’s Royal College of Art. He tells me that the inspiration for the Open Surgery Machine wasn’t sci-fi, but YouTube. “America has the most advanced health care industry in the world, but there is this growing group of middle-class U.S. citizens who have no access to it, and YouTube is currently filling this gap,” he says. “Mainly uninsured Americans are sharing videos on how to perform hacks on yourself as an alternative to professional care.” (You can see some of these videos here, although you’ll want a strong stomach to click that link.)

Conceptually, Kolkman’s Surgery Robot explores the idea of combining DIY medical pragmatism with the more capable innovations found in medical industries. It’s designed to perform simple surgeries like laparoscopic surgery, in which three or more small keyhole incisions are made to allow a surgeon to operate inside a part of a patient’s body after inflating it with CO2, reducing the risk of infection. That would allow the DIY Surgery Robot to perform (again, theoretically—the concept is non-functional) appendectomies, prostate operations, hysterectomies, and also colon and general inspections. These procedures are already often performed with the assistance of robotic surgery systems; the DIY Surgery Robot would just take those doctors out of the equation.

Ultimately, the Surgery Robot is only intended as the focus point of a thought experiment: What if there was just as robust an online community of hobbyists, engineers, and designers for alternative health care products as there are for 3-D printer and CNC milling machines? “I hope that by challenging the socioeconomic frameworks the current health care systems operate within, where health care is valued in terms of money and labor, my project raises questions about the social value of health care by showing an alternative approach,” Kolkman says.

But the designer is also frank about the fact that he thinks it’s unlikely that something like the DIY Surgical Robot could get off the ground. Even taking the legal and liability aspects of the project out of the equation, patents would likely kill it as a commercial product in the incubation stage: most of the base technologies relied upon for robot surgery are thoroughly patented and rigorously guarded.

You can read more about Kolkman’s Open Surgery project here

Alan Turing 6 Instructions

As MIT professor John Guttag explains, Interesting he originally studied english in undergrad.

Original 6 instructions created by the conflicted and emotional Alan Turing. Most of which are the basis for our text editors today. Instructions can be thought of as functions or methods, and most text editors operate very much the same

Right: Move the Machine’s head to the right of the current square
Left: Move the Machine’s head to the left of the current square
Print: Print a symbol on the current square
Scan: Identify any symbols on the current square
Erase: Erase any symbols presented o the current square
Nothing: Do nothing

A 3D CAD Solution for the Rest of Us

CNC is not a cheap proposition.  The mills are expensive.  The materials can be expensive.  And good software can be expensive.  So while we can’t do much about the first two, I’ve been thinking about how to attack that third one – the software.

I’ve looked at the alternatives and there are many.

I started with the premise that 2D AutoCAD is not sufficient anymore.  Not, that there’s anything wrong with AutoCAD – I’ve used it for years and I’m pretty proficient.  But the advantages of 3D are pretty significant and if it can be had for a reasonable price, then it would be a big improvement for me.

There are plenty of free or inexpensive 3D CAD systems (see Peter Eland’s site for a list:  http://www.eland.org.uk/pages/Misc/cadnotes.html), but I’ve always been a bit leery of shareware.  The documentation is lousy.  The support is non-existent.

A few weeks ago, I came across another alternative.  Autodesk now has a product called the AutoCAD Inventor LT Suite which includes both an up to date copy of AutoCAD LT (mine is really old) and a copy of Inventor LT.  The latter is a light version of Autodesk Inventor – the $5,000 CAD system that I would buy if money grew on trees.

Autodesk Inventor LT Suite includes both Inventor LT and AutoCAD LT

As far as I can tell, the only things that make Inventor LT different from the $5000 seat of Inventor are that (1) it only handles single parts, and (2) there are no partner applications that integrate with it (no API).  But I don’t need any of those things for my projects.  I just need a good 3D part modeler that can output model data into a format that I can convert into g-code.  Inventor LT can do what I need for around $1,000 which is within my budget.

Here’s a good 3D modeling example video that I found on YouTube.

There are also a good number of instructional videos on YouTube if you search for Autodesk Inventor.

3D Printing Teeth

MY Teach and Dental Work have been a trauma in my life since I first busted them until I needed to have a life saving operation, pretty interesting that now people are printing them out on their Rep Raps, maybe one day we will be able to print our own implants made out of special material and take them to the doctor.

These Terrifyingly Real Teeth Were Made By a New Dental 3D Printer

The world is still trying to figure out why every home would need a 3D printer, but in the professional world they continue to thrive. At the International Dental Show currently going on in Germany, Stratasys announced a new 3D printer that uses multiple materials at once to create startlingly realistic dental models in a single print run.

check out all the terrifying goodness.

Pebble Watch Leading the Way for DIY Economy

This interesting piece by 3d printing.com.  Like the internet in the early days 3D printing has been relegated to geeks and DIY enthusiasts with limited usage. But as the industry has matured it has slowly infiltrated the mainstream.  The story of Pebble watch shows how far 3D printing has come and the potential of where we can go.  How many other Startups and small businesses will spawn from the blades and lasers of a 3D printer?

p2When we decided to launch 3DPrint.com just over 13 months ago, we looked at it as a hobby, but the pace at which things have progressed, both for us and for the industry in general, has taken even us by surprise. Additive manufacturing is changing the world as we know it, and although there are still plenty of skeptics out there, I now truly believe that we are in the midst of the third industrial revolution.

“Why would anyone want a 3D printer? Who wants to pay $1000 to $2000 to be able to print out plastic little trinkets?”

Those are common questions I receive on a weekly basis from family and friends who don’t regularly read our site. The fact is, however, that they are asking legitimate questions. Why would someone pay so much money for a machine to print out plastic trinkets? What these doubters fail to realize when asking these questions is that plastic trinkets are not the driving force of this technology, and prices are rapidly declining. What is driving adoption rates of 3D printers within homes and offices are useful applications which put complete control in the consumer’s hands. As each month passes literally dozens on new applicable uses for desktop 3D printers emerge from companies small and large.

p1

Take for instance what one Palo Alto, California-based company, Pebble, is doing with their smartwatch. Pebble exploded onto the scene during the Spring of 2012. They raised a staggering$10,266,845 via Kickstarter for their E-Paper smartwatch. Soon after, buzz began to emerge that Apple would be launching their very own smartwatch as well, which they later unveiled. How does a tiny startup with several million crowdfunded dollars compete with the most valuable company on the planet? Most don’t. Even I, myself, envisioned Pebble folding soon after the announcement of the Apple Watch. I was wrong, like I am quite often, and instead of rolling over to die, the company did the same thing which initially brought them success: think outside the box.

Diagram of Pebble Smartstrap

Last month Pebble launched another Kickstarter campaign, this time for the Pebble Time smartwatch. With weeks still remaining, this campaign has already brought in well over $15.5 million. So, who’s buying a Pebble, and why are they buying it when Apple’s smartwatch is ready to be released within weeks? People who desire the ability to personalize their own accessories.

Pebble has decided that in order to succeed in a market with Apple they must differentiate themselves. How are they doing this? Via 3D printing. Late last month we did a story on Pebble, which had announced that they will be offering free downloadable 3D printing files to whomever wishes to print out their own custom watch bands. Yesterday the company released mechanical and electrical designs so that hobbyists and designers can begin customizing their very own 3D printable smartstraps. In doing so, Pebble is attracting individuals to their brand who want to be a part of their watch design, people who take pride in the fact that they are different, and that they made an impact on the watch that they are wearing.

Now envision a time in the not-too-distant future when almost anything you buy will be able to be customized for no more than the cost of some plastic filament. Now do you see where desktop 3D printers may fit into our lives?

With reliable 3D printers already on the market for less than you’d pay for an average smartphone, such a future seems like it may be closer than even I had imagined. As printers continue to expand in their capabilities, prices drop further, and the sheer number of applicable uses for these machines grows exponentially, there is little doubt in my mind that 3D printing will eventually rule our global economy. The question won’t be “Why would anyone want a 3D printer?” it will be “Why wouldn’t anyone want a 3D printer?” Pebble’s adoption of the technology into its ecosystem is only the beginning.

Let’s hear your thoughts on Pebble and its possible implications on the 3D printing space. Discuss in the 3D Printing Economy forum thread on 3DPB.com.