electricity and magnatism

Here is an Ebook I thought I would share.

Electricity and Magnetism
Benjamin Crowell
Book 4 in the Light and Matter series of introductory physics textbooks
The Light and Matter series of
introductory physics textbooks:
1 Newtonian Physics
2 Conservation Laws
3 Vibrations and Waves
4 Electricity and Magnetism
5 Optics
6 The Modern Revolution in Physics
Contents 9
Brief Contents
1 Electricity and the Atom……. 15
2 The Nucleus …………………….. 41
3 Circuits, Part 1 …………………. 71
4 Circuits, Part 2 …………………. 95
5 Fields of Force ……………….. 109
6 Electromagnetism ………….. 127
Exercises …………………………………………… 147
Solutions ……………………………………………. 153
Glossary …………………………………………….. 155
Index ………………………………………………….. 157
10 Contents
Contents
Preface ………………………………………………… 13
1 Electricity and
the Atom …………………15
1.1 The Quest for the Atomic Force……….. 16
1.2 Charge, Electricity and Magnetism …… 18
1.3 Atoms ………………………………………….. 22
1.4 Quantization of Charge…………………… 28
1.5 The Electron …………………………………. 31
1.6 The Raisin Cookie Model of the Atom . 35
Summary ……………………………………………… 37
Homework Problems ……………………………… 38
2 The Nucleus ………….41
2.1 Radioactivity …………………………………. 41
2.2 The Planetary Model of the Atom …….. 45
2.3 Atomic Number ……………………………… 48
2.4 The Structure of Nuclei …………………… 52
2.5 The Strong Nuclear Force, Alpha Decay
and Fission ……………………………………… 56
2.6 The Weak Nuclear Force; Beta Decay 58
2.7 Fusion ………………………………………….. 61
2.8 Nuclear Energy and Binding Energies. 62
2.9 Biological Effects of Ionizing Radiation 65
2.10* The Creation of the Elements ………. 67
Summary ……………………………………………… 69
Homework Problems ……………………………… 70
3 Circuits, Part 1 ………71
3.1 Current…………………………………………. 72
3.2 Circuits …………………………………………. 75
3.3 Voltage…………………………………………. 76
3.4 Resistance ……………………………………. 80
3.5 Current-Conducting Properties of Materials
………………………………………………….. 87
3.6ò Applications of Calculus ………………… 90
Summary ……………………………………………… 91
Homework Problems ……………………………… 92
4 Circuits, Part 2 ………95
4.1 Schematics …………………………………… 96
4.2 Parallel Resistances and the Junction
Rule ……………………………………………….. 97
4.3 Series Resistances ………………………. 101
Summary ……………………………………………. 105
Homework Problems ……………………………. 106
Contents 11
5 Fields of Force …….109
5.1 Why Fields? ………………………………….110
5.2 The Gravitational Field …………………..112
5.3 The Electric Field …………………………..114
5.4ò Voltage for Nonuniform Fields ………. 120
5.5 Two or Three Dimensions ……………… 121
5.6ò Field of a Continuous Charge
Distribution …………………………. 123
Summary ……………………………………………..119
Homework Problems ……………………………. 120
6 Electromagnetism .127
6.1 The Magnetic Field ………………………. 128
6.2 Calculating Magnetic Fields
and Forces ……………………………….. 126
6.3 Induction …………………………………….. 132
6.4 Electromagnetic Waves ………………… 136
6.5 Calculating Energy in Fields ………….. 138
6.6* Symmetry and Handedness …………. 142
Summary ……………………………………………. 143
Homework Problems ……………………………. 144
Exercises …………………149
Solutions ………………….155
Glossary …………………..157
Index ………………………..157

Preface
Who are you? However much you relate your identity to your
physical appearance, you know that your personality ultimately
resides in the unique arrangement of your brain’s electrical network.
Mary Shelley may have conceived of electricity as a mystical life
force that could jerk the leg of a dead frog or animate Dr.
Frankenstein’s monster, but we now know the truth is both more
subtle and more wonderful. Electricity is not the stuff of life but of
consciousness.
Evidence is mounting that the universe has produced vast
numbers of suitable habitats for life — including, within our own
solar system, a watery ancient Mars and the oceans that lie under
the icy surface of Jupiter’s moon Europa. But even as we debate
claims of fossilized Martian bacteria, a third generation of radio
astronomers has found nothing but a wasteland of static in the
search for extraterrestrial intelligence.
Is life ubiquitous in the universe but consciousness rare? In
terms of geologic time, it took a mere wink of an eye for life to
come into being on Earth once conditions were suitable, so there is
every reason to believe that it exists elsewhere. Large-brained
mammals, however, appear as a virtual afterthought in the record of
our biosphere, which remains dominated by single-celled life. Now
you begin your study of electricity and magnetism, the phenomena
of which your own mind is made. Give some though to this image
of awesome loneliness: there may be no other planet in our galaxy
of ten billion stars where a collection of electric charges and fields
can ponder its own existence.
14
15
1 Electricity and the Atom
Where the telescope ends, the microscope begins. Which of the two
has the grander view?
Victor Hugo
His father died during his mother’s pregnancy. Rejected by her as a boy,
he was packed off to boarding school when she remarried. He himself never
married, but in middle age he formed an intense relationship with a much
younger man, a relationship that he terminated when he underwent a
psychotic break. Following his early scientific successes, he spent the rest of
his professional life mostly in frustration over his inability to unlock the
secrets of alchemy.
The man being described is Isaac Newton, but not the triumphant
Newton of the standard textbook hagiography. Why dwell on the sad side
of his life? To the modern science educator, Newton’s lifelong obsession
with alchemy may seem an embarrassment, a distraction from his main
achievement, which was the creation the modern science of mechanics. To
Newton, however, his alchemical researches were naturally related to his
investigations of force and motion. What was radical about Newton’s
analysis of motion was its universality: it succeeded in describing both the
heavens and the earth with the same equations, whereas previously it had
16
been assumed that the sun, moon, stars, and planets were fundamentally
different from earthly objects. But Newton realized that if science was to
describe all of nature in a unified way, it was not enough to unite the
human scale with the scale of the universe: he would not be satisfied until
he fit the microscopic universe into the picture as well.
It should not surprise us that Newton failed. Although he was a firm
believer in the existence of atoms, there was no more experimental evidence
for their existence than there had been when the ancient Greeks first posited
them on purely philosophical grounds. Alchemy labored under a tradition
of secrecy and mysticism. Newton had already almost single-handedly
transformed the fuzzyheaded field of “natural philosophy” into something
we would recognize as the modern science of physics, and it would be
unjust to criticize him for failing to change alchemy into modern chemistry
as well. The time was not ripe. The microscope was a new invention, and it
was cutting-edge science when Newton’s contemporary Hooke discovered
that living things were made out of cells.
1.1 The Quest for the Atomic Force
Newton was not the first of the age of reason. He was the last of the
magicians…
John Maynard Keynes
Newton’s quest
Nevertheless it will be instructive to pick up Newton’s train of thought
and see where it leads us with the benefit of modern hindsight. In uniting
the human and cosmic scales of existence, he had reimagined both as stages
on which the actors were objects (trees and houses, planets and stars) that
interacted through attractions and repulsions. He was already convinced
that the objects inhabiting the microworld were atoms, so it remained only
to determine what kinds of forces they exerted on each other.
His next insight was no less brilliant for his inability to bring it to
fruition. He realized that the many human-scale forces — friction, sticky
forces, the normal forces that keep objects from occupying the same space,
and so on — must all simply be expressions of a more fundamental force
acting between atoms. Tape sticks to paper because the atoms in the tape
attract the atoms in the paper. My house doesn’t fall to the center of the
earth because its atoms repel the atoms of the dirt under it.
Here he got stuck. It was tempting to think that the atomic force was a
form of gravity, which he knew to be universal, fundamental, and mathematically
simple. Gravity, however, is always attractive, so how could he
use it to explain the existence of both attractive and repulsive atomic forces?
The gravitational force between objects of ordinary size is also extremely
small, which is why we never notice cars and houses attracting us gravitationally.
It would be hard to understand how gravity could be responsible
for anything as vigorous as the beating of a heart or the explosion of
Chapter 1 Electricity and the Atom
17
(a)
(b)
(c)
gunpowder. Newton went on to write a million words of alchemical notes
filled with speculation about some other force, perhaps a “divine force” or
“vegetative force” that would for example be carried by the sperm to the
egg.
Luckily, we now know enough to investigate a different suspect as a
candidate for the atomic force: electricity. Electric forces are often observed
between objects that have been prepared by rubbing (or other surface
interactions), for instance when clothes rub against each other in the dryer.
A useful example is shown in figure (a): stick two pieces of tape on a
tabletop, and then put two more pieces on top of them. Lift each pair from
the table, and then separate them. The two top pieces will then repel each
other, (b), as will the two bottom pieces. A bottom piece will attract a top
piece, however, (c). Electrical forces like these are similar in certain ways to
gravity, the other force that we already know to be fundamental:
• Electrical forces are universal. Although some substances, such as fur,
rubber, and plastic, respond more strongly to electrical preparation
than others, all matter participates in electrical forces to some degree.
There is no such thing as a “nonelectric” substance. Matter is both
inherently gravitational and inherently electrical.
• Experiments show that the electrical force, like the gravitational force,
is an inverse square force. That is, the electrical force between two
spheres is proportional to 1/r2, where r is the center-to-center distance
between them.
Furthermore, electrical forces make more sense than gravity as candidates
for the fundamental force between atoms, because we have observed that
they can be either attractive or repulsive.
Section 1.1 The Quest for the Atomic Force
18
1.2 Charge, Electricity and Magnetism
Charge
“Charge” is the technical term used to indicate that an object has been
prepared so as to participate in electrical forces. This is to be distinguished
from the common usage, in which the term is used indiscriminately for
anything electrical. For example, although we speak colloquially of “charging”
a battery, you may easily verify that a battery has no charge in the
technical sense, e.g. it does not exert any electrical force on a piece of tape
that has been prepared as described in the previous section.
Two types of charge
We can easily collect reams of data on electrical forces between different
substances that have been charged in different ways. We find for example
that cat fur prepared by rubbing against rabbit fur will attract glass that has
been rubbed on silk. How can we make any sense of all this information? A
vast simplification is achieved by noting that there are really only two types
of charge. Suppose we pick cat fur rubbed on rabbit fur as a representative
of type A, and glass rubbed on silk for type B. We will now find that there is
no “type C.” Any object electrified by any method is either A-like, attracting
things A attracts and repelling those it repels, or B-like, displaying the
same attractions and repulsions as B. The two types, A and B, always
display opposite interactions. If A displays an attraction with some charged
object, then B is guaranteed to undergo repulsion with it, and vice-versa.
The coulomb
Although there are only two types of charge, each type can come in
different amounts. The metric unit of charge is the coulomb (rhymes with
“drool on”), defined as follows:
One Coulomb (C) is defined as the amount of charge such that a force
of 9.0×109 N occurs between two pointlike objects with charges of 1 C
separated by a distance of 1 m.
The notation for an amount of charge is q. The numerical factor in the
definition is historical in origin, and is not worth memorizing. The definition
is stated for pointlike, i.e. very small, objects, because otherwise
different parts of them would be at different distances from each other.
Chapter 1 Electricity and the Atom
19
A model of two types of charged particles
Experiments show that all the methods of rubbing or otherwise charging
objects involve two objects, and both of them end up getting charged. If
one object acquires a certain amount of one type of charge, then the other
ends up with an equal amount of the other type. Various interpretations of
this are possible, but the simplest is that the basic building blocks of matter
come in two flavors, one with each type of charge. Rubbing objects together
results in the transfer of some of these particles from one object to the other.
In this model, an object that has not been electrically prepared may actually
possesses a great deal of both types of charge, but the amounts are equal and
they are distributed in the same way throughout it. Since type A repels
anything that type B attracts, and vice versa, the object will make a total
force of zero on any other object. The rest of this chapter fleshes out this
model and discusses how these mysterious particles can be understood as
being internal parts of atoms.
Use of positive and negative signs for charge
Because the two types of charge tend to cancel out each other’s forces, it
makes sense to label them using positive and negative signs, and to discuss
the total charge of an object. It is entirely arbitrary which type of charge to
call negative and which to call positive. Benjamin Franklin decided to
describe the one we’ve been calling “A” as negative, but it really doesn’t
matter as long as everyone is consistent with everyone else. An object with a
total charge of zero (equal amounts of both types) is referred to as electrically
neutral.
Self-Check
Criticize the following statement: “There are two types of charge, attractive and
repulsive.”
Coulomb’s law
A large body of experimental observations can be summarized as
follows:
Coulomb’s law
The magnitude of the force acting between pointlike charged objects at
a center-to-center distance r is given by the equation
F =
k
q 1 q 2
r 2 ,
where the constant k equals 9.0×109 N.m2/C2. The force is attractive if
the charges are of different signs, and repulsive if they have the same
sign.
Clever modern techniques have allowed the 1/r2 form of Coulomb’s law to
be tested to incredible accuracy, showing that the exponent is in the range
from 1.9999999999999998 to 2.0000000000000002.
Note that Coulomb’s law is closely analogous to Newton’s law of gravity,
where the magnitude of the force is Gm 1 m2 / r 2 , except that there is only
one type of mass, not two, and gravitational forces are never repulsive.
Because of this close analogy between the two types of forces, we can recycle
Section 1.2 Charge, Electricity and Magnetism
Either type can be involved in either an attraction or a repulsion. A positive charge could be involved in either an
attraction (with a negative charge) or a repulsion (with another positive), and a negative could participate in either
an attraction (with a positive) or a repulsion (with a negative).
20
a great deal of our knowledge of gravitational forces. For instance, there is
an electrical equivalent of the shell theorem: the electrical forces exerted
externally by a uniformly charged spherical shell are the same as if all the
charge was concentrated at its center, and the forces exerted internally are
zero.
Conservation of charge
An even more fundamental reason for using positive and negative
signs for electrical charge is that experiments show that charge is conserved
according to this definition: in any closed system, the total amount
of charge is a constant. This is why we observe that rubbing initially
uncharged substances together always has the result that one gains a
certain amount of one type of charge, while the other acquires an equal
amount of the other type. Conservation of charge seems natural in our
model in which matter is made of positive and negative particles. If the
charge on each particle is a fixed property of that type of particle, and if
the particles themselves can be neither created nor destroyed, then conservation
of charge is inevitable.
Electrical forces involving neutral objects
As shown in figure (a), an electrically charged object can attract
objects that are uncharged. How is this possible? The key is that even
though each piece of paper has a total charge of zero, it has at least some
charged particles in it that have some freedom to move. Suppose that the
tape is positively charged, (b). Mobile particles in the paper will respond
to the tape’s forces, causing one end of the paper to become negatively
charged and the other to become positive. The attraction is between the
paper and the tape is now stronger than the repulsion, because the
negatively charged end is closer to the tape.
Self-Check
What would have happened if the tape was negatively charged?
The path ahead
We have begun to encounter complex electrical behavior that we
would never have realized was occurring just from the evidence of our
eyes. Unlike the pulleys, blocks, and inclined planes of mechanics, the
actors on the stage of electricity and magnetism are invisible phenomena
alien to our everyday experience. For this reason, the flavor of the second
half of your physics education is dramatically different, focusing much
more on experiments and techniques. Even though you will never actually
see charge moving through a wire, you can learn to use an ammeter to
measure the flow.
Students also tend to get the impression from their first semester of
physics that it is a dead science. Not so! We are about to pick up the
historical trail that leads directly to the cutting-edge physics research you
read about in the newspaper. The atom-smashing experiments that began
around 1900, which we will be studying in chapters 1 and 2, were not
that different from the ones of the year 2000 — just smaller, simpler, and
much cheaper.
(a) A charged piece of tape attracts
uncharged pieces of paper from a distance,
and they leap up to it.
+ + +
+ +
– –
(b) The paper has zero total charge,
but it does have charged particles in
it that can move.
It wouldn’t make any difference. The roles of the positive and negative charges in the paper would be reversed, but
there would still be a net attraction.
Chapter 1 Electricity and the Atom
21
Magnetic forces
A detailed mathematical treatment of magnetism won’t come until
much later in this book, but we need to develop a few simple ideas about
magnetism now because magnetic forces are used in the experiments and
techniques we come to next. Everyday magnets come in two general types.
Permanent magnets, such as the ones on your refrigerator, are made of iron
or substances like steel that contain iron atoms. (Certain other substances
also work, but iron is the cheapest and most common.) The other type of
magnet, an example of which is the ones that make your stereo speakers
vibrate, consist of coils of wire through which electric charge flows. Both
types of magnets are able to attract iron that has not been magnetically
prepared, for instance the door of the refrigerator.
A single insight makes these apparently complex phenomena much
simpler to understand: magnetic forces are interactions between moving
charges, occurring in addition to the electric forces. Suppose a permanent
magnet is brought near a magnet of the coiled-wire type. The coiled wire
has moving charges in it because we force charge to flow. The permanent
magnet also has moving charges in it, but in this case the charges that
naturally swirl around inside the iron. (What makes a magnetized piece of
iron different from a block of wood is that the motion of the charge in the
wood is random rather than organized.) The moving charges in the coiledwire
magnet exert a force on the moving charges in the permanent magnet,
and vice-versa.
The mathematics of magnetism is significantly more complex than the
Coulomb force law for electricity, which is why we will wait until chapter 6
before delving deeply into it. Two simple facts will suffice for now:
(1) If a charged particle is moving in a region of space near where other
charged particles are also moving, their magnetic force on it is directly
proportional to its velocity.
(2) The magnetic force on a moving charged particle is always perpendicular
to the direction the particle is moving.
Example: A magnetic compass
The Earth is molten inside, and like a pot of boiling water, it roils
and churns. To make a drastic oversimplification, electric charge
can get carried along with the churning motion, so the Earth
contains moving charge. The needle of a magnetic compass is
itself a small permanent magnet. The moving charge inside the
earth interacts magnetically with the moving charge inside the
compass needle, causing the compass needle to twist around
and point north.
Example: A television tube
A TV picture is painted by a stream of electrons coming from the
back of the tube to the front. The beam scans across the whole
surface of the tube like a reader scanning a page of a book.
Magnetic forces are used to steer the beam. As the beam comes
from the back of the tube to the front, up-down and left-right
forces are needed for steering. But magnetic forces cannot be
used to get the beam up to speed in the first place, since they
can only push perpendicular to the electrons’ direction of motion,
not forward along it.
Section 1.2 Charge, Electricity and Magnetism
22
Discussion Questions
A. If the electrical attraction between two pointlike objects at a distance of 1 m
is 9×109 N, why can’t we infer that their charges are +1 and –1 C? What further
observations would we need to do in order to prove this?
B. An electrically charged piece of tape will be attracted to your hand. Does
that allow us to tell whether the mobile charged particles in your hand are
positive or negative, or both?
1.3 Atoms
I was brought up to look at the atom as a nice, hard fellow, red or grey
in color according to taste.
Rutherford
Atomism
The Greeks have been kicked around a lot in the last couple of millennia:
dominated by the Romans, bullied during the crusades by warlords
going to and from the Holy Land, and occupied by Turkey until recently.
It’s no wonder they prefer to remember their salad days, when their best
thinkers came up with concepts like democracy and atoms. Greece is
democratic again after a period of military dictatorship, and an atom is
proudly pictured on one of their coins. That’s why it hurts me to have to say
that the ancient Greek hypothesis that matter is made of atoms was pure
guesswork. There was no real experimental evidence for atoms, and the
18th-century revival of the atom concept by Dalton owed little to the
Greeks other than the name, which means “unsplittable.” Subtracting even
more cruelly from Greek glory, the name was shown to be inappropriate in
1899 when physicist J.J. Thomson proved experimentally that atoms had
even smaller things inside them, which could be extracted. (Thomson called
them “electrons.”) The “unsplittable” was splittable after all.
But that’s getting ahead of our story. What happened to the atom
concept in the intervening two thousand years? Educated people continued
to discuss the idea, and those who were in favor of it could often use it to
give plausible explanations for various facts and phenomena. One fact that
was readily explained was conservation of mass. For example, if you mix 1
kg of water with 1 kg of dirt, you get exactly 2 kg of mud, no more and no
less. The same is true for the a variety of processes such as freezing of water,
fermenting beer, or pulverizing sandstone. If you believed in atoms, conservation
of mass made perfect sense, because all these processes could be
interpreted as mixing and rearranging atoms, without changing the total
number of atoms. Still, this is nothing like a proof that atoms exist.
If atoms did exist, what types of atoms were there, and what distinguished
the different types from each other? Was it their sizes, their shapes,
their weights, or some other quality? The chasm between the ancient and
modern atomisms becomes evident when we consider the wild speculations
that existed on these issues until the present century. The ancients decided
that there were four types of atoms, earth, water, air and fire; the most
Chapter 1 Electricity and the Atom
23
popular view was that they were distinguished by their shapes. Water atoms
were spherical, hence water’s ability to flow smoothly. Fire atoms had sharp
points, which was why fire hurt when it touched one’s skin. (There was no
concept of temperature until thousands of years later.) The drastically
different modern understanding of the structure of atoms was achieved in
the course of the revolutionary decade stretching 1895 to 1905. The main
purpose of chapters 1 and 2 is to describe those momentous experiments.
Are you now or have you ever been an atomist?
“You are what you eat.” The glib modern phrase more
or less assumes the atomic explanation of digestion.
After all, digestion was pretty mysterious in ancient
times, and premodern cultures would typically believe
that eating allowed you to extract some kind of mysterious
“life force” from the food. Myths abound to the
effect that abstract qualities such as bravery or ritual
impurity can enter your body via the food you eat. In
contrast to these supernatural points of view, the ancient
atomists had an entirely naturalistic interpretation
of digestion. The food was made of atoms, and
when you digested it you were simply extracting some
atoms from it and rearranging them into the combinations
required for your own body tissues. The more
progressive medieval and renaissance scientists loved
this kind of explanation. They were anxious to drive a
stake through the heart of Aristotelian physics (and its
embellished, Church-friendly version, scholasticism),
which in their view ascribed too many occult properties
and “purposes” to objects. For instance, the Aristotelian
explanation for why a rock would fall to earth
was that it was its “nature” or “purpose” to come to rest
on the ground.
The seemingly innocent attempt to explain digestion
naturalistically, however, ended up getting the atomists
in big trouble with the Church. The problem was that
the Church’s most important sacrament involves eating
bread and wine and thereby receiving the supernatural
effect of forgiveness of sin. In connection with
this ritual, the doctrine of transubstantiation asserts that
the blessing of the eucharistic bread and wine literally
transforms it into the blood and flesh of Christ. Atomism
was perceived as contradicting transubstantiation,
since atomism seemed to deny that the blessing could
change the nature of the atoms. Although the historical
information given in most science textbooks about Galileo
represents his run-in with the Inquisition as turning
on the issue of whether the earth moves, some
historians believe his punishment had more to do with
the perception that his advocacy of atomism subverted
transubstantiation. (Other issues in the complex situation
were Galileo’s confrontational style, Pope Urban’s
military problems, and rumors that the stupid character
in Galileo’s dialogues was meant to be the Pope.)
For a long time, belief in atomism served as a badge of
nonconformity for scientists, a way of asserting a preference
for natural rather than supernatural interpretations
of phenomena. Galileo and Newton’s espousal
of atomism was an act of rebellion, like later generations’
adoption of Darwinism or Marxism.
Another conflict between scholasticism and atomism
came from the question of what was between the atoms.
If you ask modern people this question, they will
probably reply “nothing” or “empty space.” But Aristotle
and his scholastic successors believed that there
could be no such thing as empty space, i.e. a vacuum.
That was not an unreasonable point of view, because
air tends to rush in to any space you open up, and it
wasn’t until the renaissance that people figured out how
to make a vacuum.
Section 1.3 Atoms
24
Atoms, light, and everything else
Although I tend to ridicule ancient Greek philosophers like Aristotle,
let’s take a moment to praise him for something. If you read Aristotle’s
writings on physics (or just skim them, which is all I’ve done), the most
striking thing is how careful he is about classifying phenomena and analyzing
relationships among phenomena. The human brain seems to naturally
make a distinction between two types of physical phenomena: objects and
motion of objects. When a phenomenon occurs that does not immediately
present itself as one of these, there is a strong tendency to conceptualize it as
one or the other, or even to ignore its existence completely. For instance,
physics teachers shudder at students’ statements that “the dynamite exploded,
and force came out of it in all directions.” In these examples, the
nonmaterial concept of force is being mentally categorized as if it was a
physical substance. The statement that “winding the clock stores motion in
the spring” is a miscategorization of potential energy as a form of motion.
An example of ignoring the existence of a phenomenon altogether can be
elicited by asking people why we need lamps. The typical response that “the
lamp illuminates the room so we can see things,” ignores the necessary role
of light coming into our eyes from the things being illuminated.
If you ask someone to tell you briefly about atoms, the likely response is
that “everything is made of atoms,” but we’ve now seen that it’s far from
obvious which “everything” this statement would properly refer to. For the
scientists of the early 1900s who were trying to investigate atoms, this was
not a trivial issue of definitions. There was a new gizmo called the vacuum
tube, of which the only familiar example today is the picture tube of a TV.
In short order, electrical tinkerers had discovered a whole flock of new
phenomena that occurred in and around vacuum tubes, and given them
picturesque names like “x-rays,” “cathode rays,” “Hertzian waves,” and “Nrays.”
These were the types of observations that ended up telling us that we
know about matter, but fierce controversies ensued over whether these were
themselves forms of matter.
Let’s bring ourselves up to the level of classification of phenomena
employed by physicists in the year 1900. They recognized three categories:
• Matter has mass, can have kinetic energy, and can travel through a
vacuum, transporting its mass and kinetic energy with it. Matter is
conserved, both in the sense of conservation of mass and conservation
of the number of atoms of each element. Atoms can’t occupy the same
space as other atoms, so a convenient way to prove something is not a
form of matter is to show that it can pass through a solid material, in
which the atoms are packed together closely.
• Light has no mass, always has energy, and can travel through a
vacuum, transporting its energy with it. Two light beams can penetrate
through each other and emerge from the collision without being
weakened, deflected, or affected in any other way. Light can penetrate
certain kinds of matter, e.g. glass.
• The third category is everything that doesn’t fit the definition of light
or matter. This catch-all category includes, for example, time, velocity,
heat, and force.
The chemical elements
Chapter 1 Electricity and the Atom
25
How would one find out what types of atoms there were? Today, it
doesn’t seem like it should have been very difficult to work out an experimental
program to classify the types of atoms. For each type of atom, there
should be a corresponding element, i.e. a pure substance made out of
nothing but that type of atom. Atoms are supposed to be unsplittable, so a
substance like milk could not possibly be elemental, since churning it
vigorously causes it to split up into two separate substances: butter and
whey. Similarly, rust could not be an element, because it can be made by
combining two substances: iron and oxygen. Despite its apparent reasonableness,
no such program was carried out until the eighteenth century. The
ancients presumably did not do it because observation was not universally
agreed on as the right way to answer questions about nature, and also
because they lacked the necessary techniques or the techniques were the
province of laborers with low social status, such as smiths and miners.
Alchemists were hindered by atomism’s reputation forsubversiveness, and
by a tendency toward mysticism and secrecy. (The most celebrated challenge
facing the alchemists, that of converting lead into gold, is one we now
know to be impossible, since lead and gold are both elements.)
By 1900, however, chemists had done a reasonably good job of finding
out what the elements were. They also had determined the ratios of the
different atoms’ masses fairly accurately. A typical technique would be to
measure how many grams of sodium (Na) would combine with one gram of
chlorine (Cl) to make salt (NaCl). (This assumes you’ve already decided
based on other evidence that salt consisted of equal numbers of Na and Cl
atoms.) The masses of individual atoms, as opposed to the mass ratios, were
known only to within a few orders of magnitude based on indirect evidence,
and plenty of physicists and chemists denied that individual atoms
were anything more than convenient symbols.
Making sense of the elements
Section 1.3 Atoms
mH e
mH
= 3.97
mN e
mH
= 20.01
mS c
mH
= 44.60
Examples of masses of atoms compared
to that of hydrogen. Note how
some, but not all, are close to integers.
26
As the information accumulated, the challenge was to find a way of
systematizing it; the modern scientist’s aesthetic sense rebels against complication.
This hodgepodge of elements was an embarrassment. One contemporary
observer, William Crookes, described the elements as extending
“before us as stretched the wide Atlantic before the gaze of Columbus,
mocking, taunting and murmuring strange riddles, which no man has yet
been able to solve.” It wasn’t long before people started recognizing that
many atoms’ masses were nearly integer multiples of the mass of hydrogen,
the lightest element. A few excitable types began speculating that hydrogen
was the basic building block, and that the heavier elements were made of
clusters of hydrogen. It wasn’t long, however, before their parade was rained
on by more accurate measurements, which showed that not all of the
elements had atomic masses that were near integer multiples of hydrogen,
and even the ones that were close to being integer multiples were off by one
percent or so.
Chemistry professor Dmitri Mendeleev, preparing his lectures in 1869,
wanted to find some way to organize his knowledge for his students to
make it more understandable. He wrote the names of all the elements on
cards and began arranging them in different ways on his desk, trying to find
an arrangement that would make sense of the muddle. The row-andcolumn
scheme he came up with is essentially our modern periodic table.
The columns of the modern version represent groups of elements with
similar chemical properties, and each row is more massive than the one
above it. Going across each row, this almost always resulted in placing the
atoms in sequence by weight as well. What made the system significant was
its predictive value. There were three places where Mendeleev had to leave
gaps in his checkerboard to keep chemically similar elements in the same
column. He predicted that elements would exist to fill these gaps, and
extrapolated or interpolated from other elements in the same column to
predict their numerical properties, such as masses, boiling points, and
densities. Mendeleev’s professional stock skyrocketed when his three
A modern periodic table. Elements in the same column have similar chemical properties. The modern atomic numbers,
discussed in ch. 2, were not known in Mendeleev’s time, since the table could be flipped in various ways.
Chapter 1 Electricity and the Atom
elements (later named gallium, scandium and germanium) were discovered
and found to have very nearly the properties he had predicted.
One thing that Mendeleev’s table made clear was that mass was not the
basic property that distinguished atoms of different elements. To make his
table work, he had to deviate from ordering the elements strictly by mass.
For instance, iodine atoms are lighter than tellurium, but Mendeleev had to
put iodine after tellurium so that it would lie in a column with chemically
similar elements.
Direct proof that atoms existed
The success of the kinetic theory of heat was taken as strong evidence
that, in addition to the motion of any object as a whole, there is an invisible
type of motion all around us: the random motion of atoms within each
object. But many conservatives were not convinced that atoms really
existed. Nobody had ever seen one, after all. It wasn’t until generations after
the kinetic theory of heat was developed that it was demonstrated conclusively
that atoms really existed and that they participated in continuous
motion that never died out.
The smoking gun to prove atoms were more than mathematical abstractions
came when some old, obscure observations were reexamined by an
unknown Swiss patent clerk named Albert Einstein. A botanist named
Brown, using a microscope that was state of the art in 1827, observed tiny
grains of pollen in a drop of water on a microscope slide, and found that
they jumped around randomly for no apparent reason. Wondering at first if
the pollen he’d assumed to be dead was actually alive, he tried looking at
particles of soot, and found that the soot particles also moved around. The
same results would occur with any small grain or particle suspended in a
liquid. The phenomenon came to be referred to as Brownian motion, and
its existence was filed away as a quaint and thoroughly unimportant fact,
really just a nuisance for the microscopist.
It wasn’t until 1906 that Einstein found the correct interpretation for
Brown’s observation: the water molecules were in continuous random
motion, and were colliding with the particle all the time, kicking it in
random directions. After all the millennia of speculation about atoms, at
last there was solid proof. Einstein’s calculations dispelled all doubt, since he
was able to make accurate predictions of things like the average distance
traveled by the particle in a certain amount of time. (Einstein received the
Nobel Prize not for his theory of relativity but for his papers on Brownian
motion and the photoelectric effect.)
Discussion Questions
A. Based on Franklin’s data, how could one estimate the size of an oil molecule?
B. How could knowledge of the size of an individual aluminum atom be used to
infer an estimate of its mass, or vice versa?
C. How could one test Einstein’s interpretation by observing Brownian motion
at different temperatures?
Section 1.3 Atoms
28
1.4 Quantization of Charge
Proving that atoms actually existed was a big accomplishment, but
demonstrating their existence was different from understanding their
properties. Note that the Brown-Einstein observations had nothing at all to
do with electricity, and yet we know that matter is inherently electrical, and
we have been successful in interpreting certain electrical phenomena in
terms of mobile positively and negatively charged particles. Are these
particles atoms? Parts of atoms? Particles that are entirely separate from
atoms? It is perhaps premature to attempt to answer these questions without
any conclusive evidence in favor of the charged-particle model of electricity.
Strong support for the charged-particle model came from a 1911
experiment by physicist Robert Millikan at the University of Chicago.
Consider a jet of droplets of perfume or some other liquid made by blowing
it through a tiny pinhole. The droplets emerging from the pinhole must be
smaller than the pinhole, and in fact most of them are even more microscopic
than that, since the turbulent flow of air tends to break them up.
Millikan reasoned that the droplets would acquire a little bit of electric
charge as they rubbed against the channel through which they emerged, and
if the charged-particle model of electricity was right, the charge might be
split up among so many minuscule liquid drops that a single drop might
have a total charge amounting to an excess of only a few charged particles
— perhaps an excess of one positive particle on a certain drop, or an excess
of two negative ones on another.
Millikan’s ingenious apparatus, shown in the figure, consisted of two
metal plates, which could be electrically charged as needed. He sprayed a
cloud of oil droplets into the space between the plates, and selected one
drop through a microscope for study. First, with no charge on the plates, he
would determine the drop’s mass by letting it fall through the air and
measuring its terminal velocity, i.e. the velocity at which the force of air
friction canceled out the force of gravity. The force of air drag on a slowly
moving sphere was known to be bvr2, where b was a constant. Setting the
total force equal to zero when the drop is at terminal velocity gives
A young Robert Millikan. Millikan’s workbench, with the oil-drop apparatus.
+ + + + + + + + + + + + + +
– – – – – – – – – – – – – –
A simplified diagram of Millikan’s
apparatus.
Chapter 1 Electricity and the Atom
29
bvr 2 – mg = 0 ,
and setting the known density of oil equal to the drop’s mass divided by its
volume gives a second equation,
r =   m
43
pr 3
.
Everything in these equations can be measured directly except for m and r,
so these are two equations in two unknowns, which can be solved in order
to determine how big the drop is.
Next Millikan charged the metal plates, adjusting the amount of charge
so as to exactly counteract gravity and levitate the drop. If, for instance, the
drop being examined happened to have a total charge that was negative,
then positive charge put on the top plate would attract it, pulling it up, and
negative charge on the bottom plate would repel it, pushing it up. (Theoretically
only one plate would be necessary, but in practice a two-plate
arrangement like this gave electrical forces that were more uniform in
strength throughout the space where the oil drops were.) The amount of
charge on the plates required to levitate the charged drop gave Millikan a
handle on the amount of charge the drop carried. The more charge the drop
had, the stronger the electrical forces on it would be, and the less charge
would have to be put on the plates to do the trick. Unfortunately, expressing
this relationship using Coulomb’s law would have been impractical,
because it would require a perfect knowledge of how the charge was distributed
on each plate, plus the ability to perform vector addition of all the
forces being exerted on the drop by all the charges on the plate. Instead,
Millikan made use of the fact that the electrical force experienced by a
pointlike charged object at a certain point in space is proportional to its
charge,
Fq
= constant .
With a given amount of charge on the plates, this constant could be
determined for instance by discarding the oil drop, inserting between the
plates a larger and more easily handled object with a known charge on it,
and measuring the force with conventional methods. (Millikan actually
used a slightly different set of techniques for determining the constant, but
the concept is the same.) The amount of force on the actual oil drop had to
equal mg, since it was just enough to levitate it, and once the calibration
constant had been determined, the charge of the drop could then be found
based on its previously determined mass.
Section 1.4 Quantization of Charge
30
The table on the left shows a few of the results from Millikan’s 1911
paper. (Millikan took data on both negatively and positively charged drops,
but in his paper he gave only a sample of his data on negatively charged
drops, so these numbers are all negative.) Even a quick look at the data leads
to the suspicion that the charges are not simply a series of random numbers.
For instance, the second charge is almost exactly equal to half the first one.
Millikan explained the observed charges as all being integer multiples of a
single number, 1.64×10–19 C. In the second column, dividing by this
constant gives numbers that are essentially integers, allowing for the random
errors present in the experiment. Millikan states in his paper that these
results were a
…direct and tangible demonstration…of the correctness of the view
advanced many years ago and supported by evidence from many
sources that all electrical charges, however produced, are exact
multiples of one definite, elementary electrical charge, or in other
words, that an electrical charge instead of being spread uniformly
over the charged surface has a definite granular structure, consisting,
in fact, of … specks, or atoms of electricity, all precisely alike, peppered
over the surface of the charged body.
In other words, he had provided direct evidence for the charged-particle
model of electricity and against models in which electricity was described as
some sort of fluid. The basic charge is notated e, and the best modern value
is e=1.60×10-19 C
The word “quantized” is used in physics to describe a quantity that can
only have certain numerical values, and cannot have any of the values
between those. In this language, we would say that Millikan discovered that
charge is quantized. The charge e is referred to as the quantum of charge.
dents. It may be that they think students are too unsophisticated
to correctly evaluate the implications of the
fact that scientific fraud has sometimes existed and
even been rewarded by the scientific establishment.
Maybe they are afraid students will reason that fudging
data is OK, since Millikan got the Nobel Prize for it.
But falsifying history in the name of encouraging truthfulness
is more than a little ironic. English teachers
don’t edit Shakespeare’s tragedies so that the bad characters
are always punished and the good ones never
suffer!
Another possible explanation is simply a lack of originality;
it’s possible that some venerated textbook was
uncritical of Millikan’s fraud, and later authors simply
followed suit. Biologist Stephen Jay Gould has written
an essay tracing an example of how authors of biology
textbooks tend to follow a certain traditional treatment
of a topic, using the giraffe’s neck to discuss the
nonheritability of acquired traits. Yet another interpretation
is that scientists derive status from their popular
images as impartial searchers after the truth, and they
don’t want the public to realize how human and imperfect
they can be.
Historical Note: Millikan’s Fraud
Every undergraduate physics textbook I’ve ever seen
fails to note the well documented fact that although
Millikan’s conclusions were correct, he was guilty of
scientific fraud. His technique was difficult and painstaking
to perform, and his original notebooks, which
have been preserved, show that the data were far less
perfect than he claimed in his published scientific papers.
In his publications, he stated categorically that
every single oil drop observed had had a charge that
was a multiple of e, with no exceptions or omissions.
But his notebooks are replete with notations such as
“beautiful data, keep,” and “bad run, throw out.” Millikan,
then, appears to have earned his Nobel Prize by
advocating a correct position with dishonest descriptions
of his data.
Why do textbook authors fail to mention Millikan’s
fraud? It’s an interesting sociological question. I don’t
think it’s because of a lack of space: most of these
texts take a slavishly historical approach in introducing
modern physics, devoting entire sections to discussions
of topics like black body radiation, which are
historically important but not particularly helpful to stuq
(C)
q /
1.64
x10-19 C
–1.970 x10 –18 –12.02
–0.987 x10 –18 –6.02
–2.773 x10 –18 –16.93
Chapter 1 Electricity and the Atom
31
Self-Check
Is money quantized? What is the quantum of money?
1.5 The Electron
Cathode rays
Nineteenth-century physicists didn’t just spend a lot of time coming up
with wild, random speculations about things like atoms being made out of
knots. They also spent a lot of time trying to come up with wild, random
ways to play with electricity. The best experiments of this kind were the
ones that made big sparks or pretty colors of light.
One such parlor trick was the cathode ray. To produce it, you first had
to hire a good glassblower and find a good vacuum pump. The glassblower
would create a hollow tube and embed two pieces of metal in it, called the
electrodes, which were connected to the outside via metal wires passing
through the glass. Before letting him seal up the whole tube, you would
hook it up to a vacuum pump, and spend several hours huffing and puffing
away at the pump’s hand crank to get a good vacuum inside. Then, while
you were still pumping on the tube, the glassblower would melt the glass
and seal the whole thing shut. Finally, you would put a large amount of
positive charge on one wire and a large amount of negative charge on the
other. Metals have the property of letting charge move through them easily,
so the charge deposited on one of the wires would quickly spread out
because of the repulsion of each part of it for every other part. This spreading-
out process would result in nearly all the charge ending up in the
electrodes, where there is more room to spread out than there is in the wire.
For obscure historical reasons a negative electrode is called a cathode and a
positive one is an anode.
The figure shows the light-emitting stream that was observed. If, as
shown in this figure, a hole was made in the anode, the beam would extend
on through the hole until it hit the glass. Drilling a hole in the cathode,
however would not result in any beam coming out on the left side, and this
indicated that the stuff, whatever it was, was coming from the cathode. The
rays were therefore christened “cathode rays.” (The terminology is still used
today in the term “cathode ray tube” or “CRT” for the picture tube of a TV
or computer monitor.)
Section 1.4 Quantization of Charge
Yes. In U.S. currency, the quantum of money is the penny.
light emitted
when cathode
rays hit the
glass
cathode anode
light emitted
when cathode
rays hit air
molecules

–– – +
+
32
Were cathode rays a form of light, or of matter?
Were cathode rays a form of light, or matter? At first no one really cared
what they were, but as their scientific importance became more apparent,
the light-versus-matter issue turned into a controversy along nationalistic
lines, with the Germans advocating light and the English holding out for
matter. The supporters of the material interpretation imagined the rays as
consisting of a stream of atoms ripped from the substance of the cathode.
One of our defining characteristics of matter is that material objects
cannot pass through each other. Experiments showed that cathode rays
could penetrate at least some small thickness of matter, such as a metal foil a
tenth of a millimeter thick, implying that they were a form of light.
Other experiments, however, pointed to the contrary conclusion. Light
is a wave phenomenon, and one distinguishing property of waves is demonstrated
by speaking into one end of a paper towel roll. The sound waves do
not emerge from the other end of the tube as a focused beam. Instead, they
begin spreading out in all directions as soon as they emerge. This shows that
waves do not necessarily travel in straight lines. If a piece of metal foil in the
shape of a star or a cross was placed in the way of the cathode ray, then a
“shadow” of the same shape would appear on the glass, showing that the
rays traveled in straight lines. This straight-line motion suggested that they
were a stream of small particles of matter.
These observations were inconclusive, so what was really needed was a
determination of whether the rays had mass and weight. The trouble was
that cathode rays could not simply be collected in a cup and put on a scale.
When the cathode ray tube is in operation, one does not observe any loss of
material from the cathode, or any crust being deposited on the anode.
Nobody could think of a good way to weigh cathode rays, so the next
most obvious way of settling the light/matter debate was to check whether
the cathode rays possessed electrical charge. Light was known to be uncharged.
If the cathode rays carried charge, they were definitely matter and
not light, and they were presumably being made to jump the gap by the
simultaneous repulsion of the negative charge in the cathode and attraction
of the positive charge in the anode. The rays would overshoot the anode
because of their momentum. (Although electrically charged particles do not
normally leap across a gap of vacuum, very large amounts of charge were
being used, so the forces were unusually intense.)
Thomson’s experiments
Physicist J.J. Thomson at Cambridge carried out a series of definitive
experiments on cathode rays around the year 1897. By turning them
slightly off course with electrical forces, as shown in the figure, he showed
that they were indeed electrically charged, which was strong evidence that
they were material. Not only that, but he proved that they had mass, and
measured the ratio of their mass to their charge, m/q. Since their mass was
not zero, he concluded that they were a form of matter, and presumably
made up of a stream of microscopic, negatively charged particles. When
Millikan published his results fourteen years later, it was reasonable to
assume that the charge of one such particle equaled minus one fundamental
charge, q=–e, and from the combination of Thomson’s and Millikan’s results
one could therefore determine the mass of a single cathode ray particle.
Chapter 1 Electricity and the Atom
J.J. Thomson in the lab.
33
The basic technique for determining m/q was simply to measure the
angle through which the charged plates bent the beam. The electric force
acting on a cathode ray particle while it was between the plates would be
proportional to its charge,
F el e c = kn  o wn constant × q .
Application of Newton’s second law, a=F/m, would allow m/q to be determined:
mq
= kn o wn constant
a
There was just one catch. Thomson needed to know the cathode ray
particles’ velocity in order to figure out their acceleration. At that point,
however, nobody had even an educated guess as to the speed of the cathode
rays produced in a given vacuum tube. The beam appeared to leap across
the vacuum tube practically instantaneously, so it was no simple matter of
timing it with a stopwatch!
Thomson’s clever solution was to observe the effect of both electric and
magnetic forces on the beam. The magnetic force exerted by a particular
magnet would depend on both the cathode ray’s charge and its velocity:
F m ag = kn  o wn constant #2 × qv
Thomson played with the electric and magnetic forces until either one
would produce an equal effect on the beam, allowing him to solve for the
velocity,
v =
known constant
known constant #2
.
Knowing the velocity (which was on the order of 10% of the speed of
light for his setup), he was able to find the acceleration and thus the massto-
charge ratio m/q. Thomson’s techniques were relatively crude (or perhaps
more charitably we could say that they stretched the state of the art of the
time), so with various methods he came up with m/q values that ranged
over about a factor of two, even for cathode rays extracted from a cathode
made of a single material. The best modern value is
m/q= 5.69×10 –12 kg/C, which is consistent with the low end of Thomson’s
range.
Section 1.5 The Electron
+
c A B D
– E
+

Thomson’s experiment proving cathode rays
had electric charge (redrawn from his original
paper). The cathode, c, and anode, A, are
as in any cathode ray tube. The rays pass
through a slit in the anode, and a second slit,
B, is interposed in order to make the beam
thinner and eliminate rays that were not going
straight. Charging plates D and E shows
that cathode rays have charge: they are attracted
toward the positive plate D and repelled
by the negative plate E.
34
The cathode ray as a subatomic particle: the electron
What was significant about Thomson’s experiment was not the actual
numerical value of m/q, however, so much as the fact that, combined with
Millikan’s value of the fundamental charge, it gave a mass for the cathode
ray particles that was thousands of times smaller than the mass of even the
lightest atoms. Even without Millikan’s results, which were 14 years in the
future, Thomson recognized that the cathode rays’ m/q was thousands of
times smaller than the m/q ratios that had been measured for electrically
charged atoms in chemical solutions. He correctly interpreted this as
evidence that the cathode rays were smaller building blocks — he called
them electrons — out of which atoms themselves were formed. This was an
extremely radical claim, coming at a time when atoms had not yet been
proven to exist! Even those who used the word “atom” often considered
them no more than mathematical abstractions, not literal objects. The idea
of searching for structure inside of “unsplittable” atoms was seen by some as
lunacy, but within ten years Thomson’s ideas had been amply verified by
many more detailed experiments.
Discussion Questions
A. Thomson started to become convinced during his experiments that the
“cathode rays” observed coming from the cathodes of vacuum tubes were
building blocks of atoms — what we now call electrons. He then carried out
observations with cathodes made of a variety of metals, and found that m/q
was roughly the same in every case, considering his limited accuracy. Given
his suspicion, why did it make sense to try different metals? How would the
consistent values of m/q serve to test his hypothesis?
B. My students have frequently asked whether the m/q that Thomson measured
was the value for a single electron, or for the whole beam. Can you
answer this question?
C. Thomson found that the m/q of an electron was thousands of times smaller
than that of charged atoms in chemical solutions. Would this imply that the
electrons had more charge? Less mass? Would there be no way to tell?
Explain. Remember that Millikan’s results were still many years in the future,
so q was unknown.
D. Can you guess any practical reason why Thomson couldn’t just let one
electron fly across the gap before disconnecting the battery and turning off the
beam, and then measure the amount of charge deposited on the anode, thus
allowing him to measure the charge of a single electron directly?
E. Why is it not possible to determine m and q themselves, rather than just
their ratio, by observing electrons’ motion in electric and magnetic fields?
Chapter 1 Electricity and the Atom
35
1.6 The Raisin Cookie Model of the Atom
Based on his experiments, Thomson proposed a picture of the atom
which became known as the raisin cookie model. In the neutral atom
shown in the figure, there are four electrons with a total charge of -4e,
sitting in a sphere (the “cookie”) with a charge of +4e spread throughout it.
It was known that chemical reactions could not change one element into
another, so in Thomson’s scenario, each element’s cookie sphere had a
permanently fixed radius, mass, and positive charge, different from those of
other elements. The electrons, however, were not a permanent feature of the
atom, and could be tacked on or pulled out to make charged ions. Although
we now know, for instance, that a neutral atom with four electrons is the
element beryllium, scientists at the time did not know how many electrons
the various neutral atoms possessed.
This model is clearly different from the one you’ve learned in grade
school or through popular culture, where the positive charge is concentrated
in a tiny nucleus at the atom’s center. An equally important change in ideas
about the atom has been the realization that atoms and their constituent
subatomic particles behave entirely differently from objects on the human
scale. For instance, we’ll see later that an electron can be in more than one
place at one time. The raisin cookie model was part of a long tradition of
attempts to make mechanical models of phenomena, and Thomson and his
contemporaries never questioned the appropriateness of building a mental
model of an atom as a machine with little parts inside. Today, mechanical
models of atoms are still used (for instance the tinker-toy-style molecular
modeling kits like the ones used by Watson and Crick to figure out the
double helix structure of DNA), but scientists realize that the physical
objects are only aids to help our brains’ symbolic and visual processes think
about atoms.
Although there was no clear-cut experimental evidence for many of the
details of the raisin cookie model, physicists went ahead and started working
out its implications. For instance, suppose you had a four-electron
atom. All four electrons would be repelling each other, but they would also
all be attracted toward the center of the “cookie” sphere. The result should
be some kind of stable, symmetric arrangement in which all the forces
canceled out. People sufficiently clever with math soon showed that the
electrons in a four-electron atom should settle down at the vertices of a
pyramid with one less side than the Egyptian kind, i.e. a regular tetrahedron.
This deduction turns out to be wrong because it was based on
incorrect features of the model, but the model also had many successes, a
few of which we will now discuss.
Section 1.5 The Electron
–e
–e
–e
–e
+4e
The raisin cookie model of the atom
with four units of charge, which we now
know to be beryllium.
36
Example: flow of electrical charge in wires
One of my former students was the son of an electrician, and
had become an electrician himself. He related to me how his
father had refused to believe all his life that electrons really
flowed through wires. If they had, he reasoned, the metal would
have gradually become more and more damaged, eventually
crumbling to dust.
His opinion is not at all unreasonable based on the fact that
electrons are material particles, and that matter cannot normally
pass through matter without making a hole through it. Nineteenth-
century physicists would have shared his objection to a
charged-particle model of the flow of electrical charge. In the
raisin-cookie model, however, the electrons are very low in mass,
and therefore presumably very small in size as well. It is not
surprising that they can slip between the atoms without damaging
them.
Example: flow of electrical charge across cell membranes
Your nervous system is based on signals carried by charge
moving from nerve cell to nerve cell. Your body is essentially all
liquid, and atoms in a liquid are mobile. This means that, unlike
the case of charge flowing in a solid wire, entire charged atoms
can flow in your nervous system
Example: emission of electrons in a cathode ray tube
Why do electrons detach themselves from the cathode of a
vacuum tube? Certainly they are encouraged to do so by the
repulsion of the negative charge placed on the cathode and the
attraction from the net positive charge of the anode, but these
are not strong enough to rip electrons out of atoms by main force
— if they were, then the entire apparatus would have been
instantly vaporized as every atom was simultaneously ripped
apart!
The raisin cookie model leads to a simple explanation. We
know that heat is the energy of random motion of atoms. The
atoms in any object are therefore violently jostling each other all
the time, and a few of these collisions are violent enough to
knock electrons out of atoms. If this occurs near the surface of a
solid object, the electron may can come loose. Ordinarily, however,
this loss of electrons is a self-limiting process; the loss of
electrons leaves the object with a net positive charge, which
attracts the lost sheep home to the fold. (For objects immersed in
air rather than vacuum, there will also be a balanced exchange
of electrons between the air and the object.)
This interpretation explains the warm and friendly yellow
glow of the vacuum tubes in an antique radio. To encourage the
emission of electrons from the vacuum tubes’ cathodes, the
cathodes are intentionally warmed up with little heater coils.
Discussion Questions
A. Today many people would define an ion as an atom (or molecule) with
missing electrons or extra electrons added on. How would people have defined
the word “ion” before the discovery of the electron?
B. Since electrically neutral atoms were known to exist, there had to be
positively charged subatomic stuff to cancel out the negatively charged
electrons in an atom. Based on the state of knowledge immediately after the
Millikan and Thomson experiments, was it possible that the positively charged
stuff had an unquantized amount of charge? Could it be quantized in units of
+e? In units of +2e? In units of +5/7e?
Chapter 1 Electricity and the Atom
37
Summary
Selected Vocabulary
atom ………………………………… the basic unit of one of the chemical elements
molecule …………………………… a group of atoms stuck together
electrical force …………………… one of the fundamental forces of nature; a noncontact force that can
be either repulsive or attractive
charge ………………………………. a numerical rating of how strongly an object participates in electrical
forces
coulomb (C)……………………… the unit of electrical charge
ion…………………………………… an electrically charged atom or molecule
cathode ray ……………………….. the mysterious ray that emanated from the cathode in a vacuum tube;
shown by Thomson to be a stream of particles smaller than atoms
electron ……………………………. Thomson’s name for the particles of which a cathode ray was made
quantized …………………………. describes quantity such as money or electrical charge, that can only
exist in certain amounts
Notation
q …………………………………. charge
e …………………………………. the quantum of charge
Summary
All the forces we encounter in everyday life boil down to two basic types: gravitational forces and electrical
forces. A force such as friction or a “sticky force” arises from electrical forces between individual atoms.
Just as we use the word “mass” to describe how strongly an object participates in gravitational forces, we
use the word “charge” for the intensity of its electrical forces. There are two types of charge. Two charges of
the same type repel each other, but objects whose charges are different attract each other. Charge is measured
in units of coulombs (C).
Mobile charged particle model: A great many phenomena are easily understood if we imagine matter as
containing two types of charged particles, which are at least partially able to move around.
Positive and negative charge: Ordinary objects that have not been specially prepared have both types of
charge spread evenly throughout them in equal amounts. The object will then tend not to exert electrical
forces on any other object, since any attraction due to one type of charge will be balanced by an equal
repulsion from the other. (We say “tend not to” because bringing the object near an object with unbalanced
amounts of charge could cause its charges to separate from each other, and the force would no longer
cancel due to the unequal distances.) It therefore makes sense to describe the two types of charge using
positive and negative signs, so that an unprepared object will have zero total charge.
The Coulomb force law states that the magnitude of the electrical force between two charged particles is
given by |F| = k | q
1| | q
2| / r 2.
Conservation of charge: An even more fundamental reason for using positive and negative signs for
charge is that with this definition the total charge of a closed system is a conserved quantity.
Quantization of charge: Millikan’s oil drop experiment showed that the total charge of an object could only
be an integer multiple of a basic unit of charge (e). This supported the idea the the “flow” of electrical charge
was the motion of tiny particles rather than the motion of some sort of mysterious electrical fluid.
Einstein’s analysis of Brownian motion was the first definitive proof of the existence of atoms. Thomson’s
experiments with vacuum tubes demonstrated the existence of a new type of microscopic particle with a very
small ratio of mass to charge. Thomson correctly interpreted these as building blocks of matter even smaller
than atoms: the first discovery of subatomic particles. These particles are called electrons.
The above experimental evidence led to the first useful model of the interior structure of atoms, called the
raisin cookie model. In the raisin cookie model, an atom consists of a relatively large, massive, positively
charged sphere with a certain number of negatively charged electrons embedded in it.
Summary
38
Homework Problems
1. The figure shows a neuron, which is the type of cell your nerves are
made of. Neurons serve to transmit sensory information to the brain, and
commands from the brain to the muscles. All this data is transmitted
electrically, but even when the cell is resting and not transmitting any
information, there is a layer of negative electrical charge on the inside of
the cell membrane, and a layer of positive charge just outside it. This
charge is in the form of various ions dissolved in the interior and exterior
fluids. Why would the negative charge remain plastered against the inside
surface of the membrane, and likewise why doesn’t the positive charge
wander away from the outside surface?
23. Use the nutritional information on some packaged food to make an
order-of-magnitude estimate of the amount of chemical energy stored in
one atom of food, in units of joules. Assume that a typical atom has a mass
of 10 –26 kg. This constitutes a rough estimate of the amounts of energy
there are on the atomic scale. [See chapter 1 of book 1, Newtonian
Physics, for help on how to do order-of-magnitude estimates. Note that a
nutritional “calorie” is really a kilocalorie.]
3. (a3) Recall that the potential energy of two gravitationally interacting
spheres is given by PE = – Gm1m2 / r , where r is the center-to-center
distance. What would be the analogous equation for two electrically
interacting spheres? Justify your choice of a plus or minus sign on physical
grounds, considering attraction and repulsion. (b3) Use this expression to
estimate the energy required to pull apart a raisin-cookie atom of the oneelectron
type, assuming a radius of 10 –10 m. (c) Compare this with the
result of the previous problem.
43. A neon light consists of a long glass tube full of neon, with metal caps
on the ends. Positive charge is placed on one end of the tube, and negative
charge on the other. The electric forces generated can be strong
enough to strip electrons off of a certain number of neon atoms. Assume
for simplicity that only one electron is ever stripped off of any neon atom.
When an electron is stripped off of an atom, both the electron and the
neon atom (now an ion) have electric charge, and they are accelerated by
the forces exerted by the charged ends of the tube. (They do not feel any
significant forces from the other ions and electrons within the tube,
because only a tiny minority of neon atoms ever gets ionized.) Light is
finally produced when ions are reunited with electrons. Compare the
magnitudes and directions of the accelerations of the electrons and ions.
(A numerical answer is not necessary.)
5. If you put two hydrogen atoms near each other, they will feel an
attractive force, and they will pull together to form a molecule. (Molecules
consisting of two hydrogen atoms are the normal form of hydrogen
gas.) Why do they feel a force if they are near each other, since each is
electrically neutral? Shouldn’t the attractive and repulsive forces all cancel
out exactly?
Chapter 1 Electricity and the Atom
———
———
+++++++++
+++++++++
(a)
(b)
Problem 1. (a) Realistic picture of a
neuron. (b) Simplified diagram of one
segment of the tail (axon).
S A solution is given in the back of the book. « A difficult problem.
3 A computerized answer check is available. ò A problem that requires calculus.
39
6 3. The figure shows one layer of the three-dimensional structure of a
salt crystal. The atoms extend much farther off in all directions, but only
a six-by-six square is shown here. The larger circles are the chlorine ions,
which have charges of -e. The smaller circles are sodium ions, with
charges of +e. The distance between neighboring ions is about 0.3 nm.
Real crystals are never perfect, and the crystal shown here has two defects:
a missing atom at one location, and an extra lithium atom, shown as a
grey circle, inserted in one of the small gaps. If the lithium atom has a
charge of +e, what is the direction and magnitude of the total force on it?
Assume there are no other defects nearby in the crystal besides the two
shown here. [Hints: The force on the lithium ion is the vector sum of all
the forces of all the quadrillions of sodium and chlorine atoms, which
would obviously be too laborious to calculate. Nearly all of these forces,
however, are canceled by a force from an ion on the opposite side of the
litium.]
7 3. The Earth and Moon are bound together by gravity. If, instead, the
force of attraction were the result of each having a charge of the same
magnitude but opposite in sign, find the quantity of charge that would
have to be placed on each to produce the required force.
Homework Problems
– + – + – +
– + – + – +
– + – + – +
– + + – +
– + – + – +
– + – + – +
Problem 6.
40
41
2 The Nucleus
2.1 Radioactivity
Becquerel’s discovery of radioactivity
How did physicists figure out that the raisin cookie model was incorrect,
and that the atom’s positive charge was concentrated in a tiny, central
nucleus? The story begins with the discovery of radioactivity by the French
chemist Becquerel. Up until radioactivity was discovered, all the processes of
nature were thought to be based on chemical reactions, which were rearrangements
of combinations of atoms. Atoms exert forces on each other
when they are close together, so sticking or unsticking them would either
release or store potential energy. That energy could be converted to and
from other forms, as when a plant uses the energy in sunlight to make
sugars and carbohydrates, or when a small child eats sugar, releasing the
energy in the form of kinetic energy.
Becquerel discovered a process that seemed to release energy from an
unknown new source that was not chemical. Becquerel, whose father and
grandfather had also been physicists, spent the first twenty years of his
Marie and Pierre Curie were the first to purify radium in significant quantities. Radium’s intense
radioactivity made possible the experiments that led to the modern planetary model of the atom, in
which electrons orbit a nucleus made of protons and neutrons.
Section 2.1 Radioactivity
42
professional life as a successful civil engineer, teaching physics only on a
part-time basis. He was awarded the chair of physics at the Musée
d’Histoire Naturelle in Paris after the death of his father, who had previously
occupied it. Having now a significant amount of time to devote to
physics, he began studying the interaction of light and matter. He became
interested in the phenomenon of phosphorescence, in which a substance
absorbs energy from light, then releases the energy via a glow that only
gradually goes away. One of the substances he investigated was a uranium
compound, the salt UKSO5. One day in 1896, cloudy weather interfered
with his plan to expose this substance to sunlight in order to observe its
fluorescence. He stuck it in a drawer, coincidentally on top of a blank
photographic plate — the old-fashioned glass-backed counterpart of the
modern plastic roll of film. The plate had been carefully wrapped, but
several days later when Becquerel checked it in the darkroom before using
it, he found that it was ruined, as if it had been completely exposed to light.
History provides many examples of scientific discoveries that occurred
in this way: an alert and inquisitive mind decides to investigate a phenomenon
that most people would not have worried about explaining. He first
determined by further experiments that the effect was produced by the
uranium salt, despite a thick wrapping of paper around the plate that
blocked out all light. He tried a variety of compounds, and found that it
was the uranium that did it: the effect was produced by any uranium
compound, but not by any compound that didn’t include uranium atoms.
The effect could be at least partially blocked by a sufficient thickness of
metal, and he was able to produce silhouettes of coins by interposing them
between the uranium and the plate. This indicated that the effect traveled
in a straight line., so that it must have been some kind of ray rather than,
e.g., the seepage of chemicals through the paper. He used the word “radiations,”
since the effect radiated out from the uranium salt.
At this point Becquerel still believed that the uranium atoms were
absorbing energy from light and then gradually releasing the energy in the
form of the mysterious rays, and this was how he presented it in his first
published lecture describing his experiments. Interesting, but not earthshattering.
But he then tried to determine how long it took for the uranium
to use up all the energy that had supposedly been stored in it by light, and
he found that it never seemed to become inactive, no matter how long he
waited. Not only that, but a sample that had been exposed to intense
sunlight for a whole afternoon was no more or less effective than a sample
that had always been kept inside. Was this a violation of conservation of
energy? If the energy didn’t come from exposure to light, where did it come
from?
Chapter 2 The Nucleus
43
Three kinds of “radiations”
Unable to determine the source of the energy directly, turn-of-thecentury
physicists instead studied the behavior of the “radiations” once they
had been emitted. Becquerel had already shown that the radioactivity could
penetrate through cloth and paper, so the first obvious thing to do was to
investigate in more detail what thickness of material the radioactivity could
get through. They soon learned that a certain fraction of the radioactivity’s
intensity would be eliminated by even a few inches of air, but the remainder
was not eliminated by passing through more air. Apparently, then, the
radioactivity was a mixture of more than one type, of which one was
blocked by air. They then found that of the part that could penetrate air, a
further fraction could be eliminated by a piece of paper or a very thin metal
foil. What was left after that, however, was a third, extremely penetrating
type, some of whose intensity would still remain even after passing through
a brick wall. They decided that this showed there were three types of
radioactivity, and without having the faintest idea of what they really were,
they made up names for them. The least penetrating type was arbitrarily
labeled a (alpha), the first letter of the Greek alphabet, and so on through b
(beta) and finally g (gamma) for the most penetrating type.
Radium: a more intense source of radioactivity
The measuring devices used to detect radioactivity were crude: photographic
plates or even human eyeballs (radioactivity makes flashes of light in
the jelly-like fluid inside the eye, which can be seen by the eyeball’s owner if
it is otherwise very dark). Because the ways of detecting radioactivity were
so crude and insensitive, further progress was hindered by the fact that the
amount of radioactivity emitted by uranium was not really very great. The
vital contribution of physicist/chemist Marie Curie and her husband Pierre
was to discover the element radium, and to purify and isolate significant
quantities it. Radium emits about a million times more radioactivity per
unit mass than uranium, making it possible to do the experiments that were
needed to learn the true nature of radioactivity. The dangers of radioactivity
to human health were then unknown, and Marie died of leukemia thirty
years later. (Pierre was run over and killed by a horsecart.)
Section 2.1 Radioactivity
44
Tracking down the nature of alphas, betas, and gammas
As radium was becoming available, an apprentice scientist named
Ernest Rutherford arrived in England from his native New Zealand and
began studying radioactivity at the Cavendish Laboratory. The young
colonial’s first success was to measure the mass-to-charge ratio of beta rays.
The technique was essentially the same as the one Thomson had used to
measure the mass-to-charge ratio of cathode rays by measuring their
deflections in electric and magnetic fields. The only difference was that
instead of the cathode of a vacuum tube, a nugget of radium was used to
supply the beta rays. Not only was the technique the same, but so was the
result. Beta rays had the same m/q ratio as cathode rays, which suggested
they were one and the same. Nowadays, it would make sense simply to use
the term “electron,” and avoid the archaic “cathode ray” and “beta particle,”
but the old labels are still widely used, and it is unfortunately necessary for
physics students to memorize all three names for the same thing.
At first, it seemed that neither alphas or gammas could be deflected in
electric or magnetic fields, making it appear that neither was electrically
charged. But soon Rutherford obtained a much more powerful magnet,
and was able to use it to deflect the alphas but not the gammas. The alphas
had a much larger value of m/q than the betas (about 4000 times greater),
which was why they had been so hard to deflect. Gammas are uncharged,
and were later found to be a form of light.
The m/q ratio of alpha particles turned out to be the same as those of
two different types of ions, He++ (a helium atom with two missing electrons)
and H2
+ (two hydrogen atoms bonded into a molecule, with one electron
missing) , so it seemed likely that they were one or the other of those. The
diagram shows a simplified version of Rutherford’s ingenious experiment
proving that they were He++ ions. The gaseous element radon, an alpha
emitter, was introduced into one half of a double glass chamber. The glass
wall dividing the chamber was made extremely thin, so that some of the
rapidly moving alpha particles were able to penetrate it. The other chamber,
which was initially evacuated, gradually began to accumulate a population
of alpha particles (which would quickly pick up electrons from their
surroundings and become electrically neutral). Rutherford then determined
that it was helium gas that had appeared in the second chamber. Thus alpha
particles were proved to be He++ ions. The nucleus was yet to be discovered,
but in modern terms, we would describe a He++ ion as the nucleus of a He
atom.
To summarize, here are the three types of radiation emitted by radioactive
elements, and their descriptions in modern terms:
alpha particle stopped by a few inches of air He nucleus
beta particle stopped by a piece of paper electron
gamma ray penetrates thick shielding a type of light
Discussion Question
Most sources of radioactivity emit alphas, betas, and gammas, not just one of
the three. In the radon experiment, how did Rutherford know that he was
studying the alphas?
radon gas
alpha particles
thin glass wall
A simplified version of Rutherford’s
1908 experiment, showing that alpha
particles were doubly ionized helium
atoms.
Chapter 2 The Nucleus
45
2.2 The Planetary Model of the Atom
The stage was now set for the unexpected discovery that the positively
charged part of the atom was a tiny, dense lump at the atom’s center rather
than the “cookie dough” of the raisin cookie model. By 1909, Rutherford
was an established professor, and had students working under him. For a
raw undergraduate named Marsden, he picked a research project he thought
would be tedious but straightforward.
It was already known that although alpha particles would be stopped
completely by a sheet of paper, they could pass through a sufficiently thin
metal foil. Marsden was to work with a gold foil only 1000 atoms thick.
(The foil was probably made by evaporating a little gold in a vacuum
chamber so that a thin layer would be deposited on a glass microscope slide.
The foil would then be lifted off the slide by submerging the slide in water.)
Rutherford had already determined in his previous experiments the
speed of the alpha particles emitted by radium, a fantastic 1.5×107 m/s. The
experimenters in Rutherford’s group visualized them as very small, very fast
cannonballs penetrating the “cookie dough” part of the big gold atoms. A
piece of paper has a thickness of a hundred thousand atoms or so, which
would be sufficient to stop them completely, but crashing through a
thousand would only slow them a little and turn them slightly off of their
original paths.
Marsden’s supposedly ho-hum assignment was to use the apparatus
shown in the figure to measure how often alpha particles were deflected at
various angles. A tiny lump of radium in a box emitted alpha particles, and
a thin beam was created by blocking all the alphas except those that happened
to pass out through a tube. Typically deflected in the gold by only a
small amount, they would reach a screen very much like the screen of a
TV’s picture tube, which would make a flash of light when it was hit. Here
is the first example we have encountered of an experiment in which a beam
of particles is detected one at a time. This was possible because each alpha
particle carried so much kinetic energy; they were moving at about the same
speed as the electrons in the Thomson experiment, but had ten thousand
times more mass.
Marsden sat in a dark room, watching the apparatus hour after hour
and recording the number of flashes with the screen moved to various
angles. The rate of the flashes was highest when he set the screen at an angle
close to the line of the alphas’ original path, but if he watched an area
farther off to the side, he would also occasionally see an alpha that had been
deflected through a larger angle. After seeing a few of these, he got the crazy
idea of moving the screen to see if even larger angles ever occurred, perhaps
even angles larger than 90 degrees.
The crazy idea worked: a few alpha particles were deflected through
angles of up to 180 degrees, and the routine experiment had become an
epoch-making one. Rutherford said, “We have been able to get some of the
alpha particles coming backwards. It was almost as incredible as if you fired
a 15-inch shell at a piece of tissue paper and it came back and hit you.”
Explanations were hard to come by in the raisin cookie model. What
gold foil
radium
alpha
particles
scintillating
screen
vacuum
chamber
microscope
Section 2.2 The Planetary Model of the Atom
46
intense electrical forces could have caused some of the alpha particles,
moving at such astronomical speeds, to change direction so drastically?
Since each gold atom was electrically neutral, it would not exert much force
on an alpha particle outside it. True, if the alpha particle was very near to or
inside of a particular atom, then the forces would not necessarily cancel out
perfectly; if the alpha particle happened to come very close to a particular
electron, the 1/r2 form of the Coulomb force law would make for a very
strong force. But Marsden and Rutherford knew that an alpha particle was
8000 times more massive than an electron, and it is simply not possible for
a more massive object to rebound backwards from a collision with a less
massive object while conserving momentum and energy. It might be
possible in principle for a particular alpha to follow a path that took it very
close to one electron, and then very close to another electron, and so on,
with the net result of a large deflection, but careful calculations showed that
such multiple “close encounters” with electrons would be millions of times
too rare to explain what was actually observed.
At this point, Rutherford and Marsden dusted off an unpopular and
neglected model of the atom, in which all the electrons orbited around a
small, positively charged core or “nucleus,” just like the planets orbiting
around the sun. All the positive charge and nearly all the mass of the atom
would be concentrated in the nucleus, rather than spread throughout the
atom as in the raisin cookie model. The positively charged alpha particles
would be repelled by the gold atom’s nucleus, but most of the alphas would
not come close enough to any nucleus to have their paths drastically altered.
The few that did come close to a nucleus, however, could rebound backwards
from a single such encounter, since the nucleus of a heavy gold atom
would be fifty times more massive than an alpha particle. It turned out that
it was not even too difficult to derive a formula giving the relative frequency
of deflections through various angles, and this calculation agreed with the
data well enough (to within 15%), considering the difficulty in getting
good experimental statistics on the rare, very large angles.
What had started out as a tedious exercise to get a student started in
science had ended as a revolution in our understanding of nature. Indeed,
the whole thing may sound a little too much like a moralistic fable of the
scientific method with overtones of the Horatio Alger genre. The skeptical
reader may wonder why the planetary model was ignored so thoroughly
until Marsden and Rutherford’s discovery. Is science really more of a
sociological enterprise, in which certain ideas become accepted by the
establishment, and other, equally plausible explanations are arbitrarily
discarded? Some social scientists are currently ruffling a lot of scientists’
feathers with critiques very much like this, but in this particular case, there
were very sound reasons for rejecting the planetary model. As you’ll learn in
more detail later in this course, any charged particle that undergoes an
acceleration dissipate energy in the form of light. In the planetary model,
the electrons were orbiting the nucleus in circles or ellipses, which meant
orbiting electrons
nucleus
The planetary model of the atom.
Chapter 2 The Nucleus
47
they were undergoing acceleration, just like the acceleration you feel in a car
going around a curve. They should have dissipated energy as light, and
eventually they should have lost all their energy. Atoms don’t spontaneously
collapse like that, which was why the raisin cookie model, with its stationary
electrons, was originally preferred. There were other problems as well. In
the planetary model, the one-electron atom would have to be flat, which
would be inconsistent with the success of molecular modeling with spherical
balls representing hydrogen and atoms. These molecular models also
seemed to work best if specific sizes were used for different atoms, but there
is no obvious reason in the planetary model why the radius of an electron’s
orbit should be a fixed number. In view of the conclusive Marsden-Rutherford
results, however, these became fresh puzzles in atomic physics, not
reasons for disbelieving the planetary model.
Some phenomena explained with the planetary model
The planetary model may not be the ultimate, perfect model of the
atom, but don’t underestimate its power. It already allows us to visualize
correctly a great many phenomena.
As an example, let’s consider the distinctions among nonmetals, metals
that are magnetic, and metals that are nonmagnetic. As shown in the
figures, a metal differs from a nonmetal because its outermost electrons are
free to wander rather than owing their allegiance to a particular atom. A
metal that can be magnetized is one that is willing to line up the rotations
of some of its electrons so that their axes are parallel. Recall that magnetic
forces are forces made by moving charges; we have not yet discussed the
mathematics and geometry of magnetic forces, but it is easy to see how
random orientations of the atoms in the nonmagnetic substance would lead
to cancellation of the forces.
Even if the planetary model does not immediately answer such questions
as why one element would be a metal and another a nonmetal, these
ideas would be difficult or impossible to conceptualize in the raisin cookie
model.
Discussion questions
In reality, charges of the same type repel one another and charges of different
types are attracted. Suppose the rules were the other way around, giving
repulsion between opposite charges and attraction between similar ones. What
would the universe be like?
A nonmetal.
A nonmagnetic metal.
A magnetized metal.
Note that all these figures are simplified
in several ways. For one thing, the
electrons of an individual atom do not
all revolve around the nucleus in the
same plane. It is also very unusual for
a metal to become so strongly magnetized
that 100% of its atoms have
their rotations aligned as shown in this
figure.
Section 2.2 The Planetary Model of the Atom
48
2.3 Atomic Number
As alluded to in a discussion question in the previous section, scientists
of this period had only a very approximate idea of how many units of
charge resided in the nuclei of the various chemical elements. Although we
now associate the number of units of nuclear charge with the element’s
position on the periodic table, and call it the atomic number, they had no
idea that such a relationship existed. Mendeleev’s table just seemed like an
organizational tool, not something with any necessary physical significance.
And everything Mendeleev had done seemed equally valid if you turned the
table upside-down or reversed its left and right sides, so even if you wanted
to number the elements sequentially with integers, there was an ambiguity
as to how to do it. Mendeleev’s original table was in fact upside-down
compared to the modern one.
In the period immediately following the discovery of the nucleus,
physicists only had rough estimates of the charges of the various nuclei. In
the case of the very lightest nuclei, they simply found the maximum
number of electrons they could strip off by various methods: chemical
reactions, electric sparks, ultraviolet light, and so on. For example they
could easily strip of one or two electrons from helium, making He+ or He++,
but nobody could make He+++, presumably because the nuclear charge of
helium was only +2e. Unfortunately only a few of the lightest elements
could be stripped completely, because the more electrons were stripped off,
the greater the positive net charge remaining, and the more strongly the rest
of the negatively charged electrons would be held on. The heavy elements’
atomic numbers could only be roughly extrapolated from the light elements,
where the atomic number was about half the atom’s mass expressed
in units of the mass of a hydrogen atom. Gold, for example, had a mass
about 197 times that of hydrogen, so its atomic number was estimated to be
about half that, or somewhere around 100. We now know it to be 79.
How did we finally find out? The riddle of the nuclear charges was at
last successfully attacked using two different techniques, which gave consis-
A modern periodic table, labeled with atomic numbers. Mendeleev’s original table was upside-down compared to this one.
Chapter 2 The Nucleus

tent results. One set of experiments, involving x-rays, was performed by the
young Henry Mosely, whose scientific brilliance was soon to be sacrificed in
a battle between European imperialists over who would own the
Dardanelles, during that pointless conflict then known as the War to End
All Wars, and now referred to as World War I.
Since Mosely’s analysis requires several concepts with which you are not
yet familiar, we will instead describe the technique used by James Chadwick
at around the same time. An added bonus of describing Chadwick’s experiments
is that they presaged the important modern technique of studying
collisions of subatomic particles. In grad school, I worked with a professor
whose thesis adviser’s thesis adviser was Chadwick, and he related some
interesting stories about the man. Chadwick was apparently a little nutty
and a complete fanatic about science, to the extent that when he was held in
a German prison camp during World War II, he managed to cajole his
captors into allowing him to scrounge up parts from broken radios so that
he could attempt to do physics experiments.
Chadwick’s experiment worked like this. Suppose you perform two
Rutherford-type alpha scattering measurements, first one with a gold foil as
a target as in Rutherford’s original experiment, and then one with a copper
foil. It is possible to get large angles of deflection in both cases, but as
shown in the figure, the alpha particle must be heading almost straight for
the copper nucleus to get the same angle of deflection that would have
occurred with an alpha that was much farther off the mark; the gold
nucleus’ charge is so much greater than the copper’s that it exerts a strong
force on the alpha particle even from far off. The situation is very much like
that of a blindfolded person playing darts. Just as it is impossible to aim an
alpha particle at an individual nucleus in the target, the blindfolded person
cannot really aim the darts. Achieving a very close encounter with the
copper atom would be akin to hitting an inner circle on the dartboard. It’s
copper nucleus
alpha particle
gold nucleus
alpha particle
Section 2.3 Atomic Number
50
much more likely that one would have the luck to hit the outer circle,
which covers a greater number of square inches. By analogy, if you measure
the frequency with which alphas are scattered by copper at some particular
angle, say between 19 and 20 degrees, and then perform the same measurement
at the same angle with gold, you get a much higher percentage for
gold than for copper.
In fact, the numerical ratio of the two nuclei’s charges can be derived
from this same experimentally determined ratio. Using the standard notation
Z for the atomic number (charge of the nucleus divided by e), the
following equation can be proved:
Z g old
2
Z copper
2 =
number of alphas scattered by gold at 19–20°
number of alphas scattered by copper at 19–20°
By making such measurements for targets constructed from all the
elements, one can infer the ratios of all the atomic numbers, and since the
atomic numbers of the light elements were already known, atomic numbers
could be assigned to the entire periodic table. According to Mosely, the
atomic numbers of copper, silver and platinum were 29, 47, and 78, which
corresponded well with their positions on the periodic table. Chadwick’s
figures for the same elements were 29.3, 46.3, and 77.4, with error bars of
about ± 1.5 times the fundamental charge, so the two experiments were in
good agreement.
The point here is absolutely not that you should be ready to plug
numbers into the above equation for a homework or exam question! My
overall goal in this chapter is to explain how we know what we know about
atoms. An added bonus of describing Chadwick’s experiment is that the
approach is very similar to that used in modern particle physics experiments,
and the ideas used in the analysis are closely related to the nowubiquitous
concept of a “cross-section.” In the dartboard analogy, the crosssection
would be the area of the circular ring you have to hit. The reasoning
behind the invention of the term “cross-section” can be visualized as shown
in the figure. In this language, Rutherford’s invention of the planetary
model came from his unexpected discovery that there was a nonzero crosssection
for alpha scattering from gold at large angles, and Chadwick
confirmed Mosely’s determinations of the atomic numbers by measuring
cross-sections for alpha scattering.
19°
20°
nucleus
An alpha particle must be headed for the
ring on the front of the imaginary cylindrical
pipe in order to produce scattering at
an angle between 19 and 20 degrees.
The area of this ring is called the “crosssection”
for scattering at 19-20° because
it is the cross-sectional area of a cut
through the pipe.
Chapter 2 The Nucleus
51
As an example of the modern use of scattering experiments and crosssection
measurements, you may have heard of the recent experimental
evidence for the existence of a particle called the top quark. Of the twelve
subatomic particles currently believed to be the smallest constituents of
matter, six form a family called the quarks, distinguished from the other six
by the intense attractive forces that make the quarks stick to each other.
(The other six consist of the electron plus five other, more exotic particles.)
The only two types of quarks found in naturally occurring matter are the
“up quark” and “down quark,” which are what protons and neutrons are
made of, but four other types were theoretically predicted to exist, for a
total of six. (The whimsical term “quark” comes from a line by James Joyce
reading “Three quarks for master Mark.”) Until recently, only five types of
quarks had been proven to exist via experiments, and the sixth, the top
quark, was only theorized. There was no hope of ever detecting a top quark
directly, since it is radioactive, and only exists for a zillionth of a second
before evaporating. Instead, the researchers searching for it at the Fermi
National Accelerator Laboratory near Chicago measured cross-sections for
scattering of nuclei off of other nuclei. The experiment was much like those
of Rutherford and Chadwick, except that the incoming nuclei had to be
boosted to much higher speeds in a particle accelerator. The resulting
encounter with a target nucleus was so violent that both nuclei were
completely demolished, but, as Einstein proved, energy can be converted
into matter, and the energy of the collision creates a spray of exotic, radioactive
particles, like the deadly shower of wood fragments produced by a
Proof of the relationship between atomic number and scattering
The equation above can be derived by the following
not very rigorous proof. To deflect the alpha particle
by a certain angle requires that it acquire a certain
momentum component in the direction perpendicular
to its original momentum. Although the nucleus’ force
on the alpha particle is not constant, we can pretend
that it is approximately constant during the time when
the alpha is within a distance equal to, say, 150% of
its distance of closest approach, and that the force is
zero before and after that part of the motion. (If we
chose 120% or 200%, it shouldn’t make any difference
in the final result, because the final result is a
ratio, and the effects on the numerator and denominator
should cancel each other.) In the approximation
of constant force, the change in the alpha’s perpendicular
momentum component is then equal to FDt.
The Coulomb force law says the force is proportional
to Z / r 2 . Although r does change somewhat during
the time interval of interest, it’s good enough to treat
it as a constant number, since we’re only computing
the ratio between the two experiments’ results. Since
we are approximating the force as acting over the time
during which the distance is not too much greater than
the distance of closest approach, the time interval Dt
must be proportional to r, and the sideways momentum
imparted to the alpha, FDt, is proportional to
Z / r 2 r , or Z / r. If we’re comparing alphas scattered
at the same angle from gold and from copper, then Dp
is the same in both cases, and the proportionality
Dp µ  Z / r tells us that the ones scattered from copper
at that angle had to be headed in along a line closer to
the central axis by a factor equaling Z g o ld / Z copper . If
you imagine a “dartboard ring” that the alphas have to
hit, then the ring for the gold experiment has the same
proportions as the one for copper, but it is enlarged by
a factor equal to Z g o ld / Z copper . That is, not only is the
radius of the ring greater by that factor, but unlike the
rings on a normal dartboard, the thickness of the outer
ring is also greater in proportion to its radius. When
you take a geometric shape and scale it up in size like
a photographic enlargement, its area is increased in
proportion to the square of the enlargement factor, so
the area of the dartboard ring in the gold experiment is
greater by a factor equal to Z g old / Z copper
2
. Since
the alphas are aimed entirely randomly, the chances
of an alpha hitting the ring are in proportion to the area
of the ring, which proves the equation given above.
Section 2.3 Atomic Number
52
cannon ball in an old naval battle. Among those particles were some top
quarks. The cross-sections being measured were the cross-sections for the
production of certain combinations of these secondary particles. However
different the details, the principle was the same as that employed at the turn
of the century: you smash things together and look at the fragments that fly
off to see what was inside them. The approach has been compared to
shooting a clock with a rifle and then studying the pieces that fly off to
figure out how the clock worked.
Discussion questions
A. Why does it make sense that, as shown in the figure, the trajectories that
result in 19° and 20° scattering cross each other?
B. Rutherford knew the velocity of the alpha particles emitted by radium, and
guessed that the positively charged part of a gold atom had a charge of about
+100e (we now know it is +79e). Considering the fact that some alpha particles
were deflected by 180°, how could he then use conservation of energy to
derive an upper limit on the size of a gold nucleus? (For simplicity, assume the
size of the alpha particle is negligible compared to that of the gold nucleus,
and ignore the fact that the gold nucleus recoils a little from the collision,
picking up a little kinetic energy.)
C. The diagram showing alpha particles being deflected by a gold nucleus was
drawn with the assumption that alpha particles came in on lines at many
different distances from the nucleus. Why wouldn’t they all come in along the
same line, since they all came out through the same tube?
2.4 The Structure of Nuclei
The proton
The fact that the nuclear charges were all integer multiples of e suggested
to many physicists that rather than being a pointlike object, the
nucleus might contain smaller particles having individual charges of +e.
Evidence in favor of this idea was not long in arriving. Rutherford reasoned
that if he bombarded the atoms of a very light element with alpha particles,
the small charge of the target nuclei would give a very weak repulsion.
Perhaps those few alpha particles that happened to arrive on head-on
collision courses would get so close that they would physically crash into
some of the target nuclei. An alpha particle is itself a nucleus, so this would
be a collision between two nuclei, and a violent one due to the high speeds
involved. Rutherford hit pay dirt in an experiment with alpha particles
striking a target containing nitrogen atoms. Charged particles were detected
flying out of the target like parts flying off of cars in a high-speed crash.
Measurements of the deflection of these particles in electric and magnetic
fields showed that they had the same charge-to-mass ratio as singly-ionized
hydrogen atoms. Rutherford concluded that these were the conjectured
singly-charged particles that held the charge of the nucleus, and they were
later named protons. The hydrogen nucleus consists of a single proton, and
in general, an element’s atomic number gives the number of protons
contained in each of its nuclei. The mass of the proton is about 1800 times
greater than the mass of the electron.
Chapter 2 The Nucleus
53
The neutron
It would have been nice and simple if all the nuclei could have been
built only from protons, but that couldn’t be the case. If you spend a little
time looking at a periodic table, you will soon notice that although some of
the atomic masses are very nearly integer multiples of hydrogen’s mass,
many others are not. Even where the masses are close whole numbers, the
masses of an element other than hydrogen is always greater than its atomic
number, not equal to it. Helium, for instance, has two protons, but its mass
is four times greater than that of hydrogen.
Chadwick cleared up the confusion by proving the existence of a new
subatomic particle. Unlike the electron and proton, which are electrically
charged, this particle is electrically neutral, and he named it the neutron.
Chadwick’s experiment has been described in detail in chapter 4 of book 2
of this series, but briefly the method was to expose a sample of the light
element beryllium to a stream of alpha particles from a lump of radium.
Beryllium has only four protons, so an alpha that happens to be aimed
directly at a beryllium nucleus can actually hit it rather than being stopped
short of a collision by electrical repulsion. Neutrons were observed as a new
form of radiation emerging from the collisions, and Chadwick correctly
inferred that they were previously unsuspected components of the nucleus
that had been knocked out. As described in book 2, Chadwick also determined
the mass of the neutron; it is very nearly the same as that of the
proton.
To summarize, atoms are made of three types of particles:
charge
mass in units of
the proton’s mass location in atom
proton +e 1 in nucleus
neutron 0 1.001 in nucleus
electron -e 1/1836 orbiting around nucleus
The existence of neutrons explained the mysterious masses of the
elements. Helium, for instance, has a mass very close to four times greater
than that of hydrogen. This is because it contains two neutrons in addition
to its two protons. The mass of an atom is essentially determined by the
total number of neutrons and protons. The total number of neutrons plus
protons is therefore referred to as the atom’s mass number.
n
p e
p
e
n p
e
Examples of the construction of atoms:
hydrogen (top) and helium (bottom).
On this scale, the electrons’ orbits
would be the size of a college campus.
Section 2.4 The Structure of Nuclei
54
Isotopes
We now have a clear interpretation of the fact that helium is close to
four times more massive than hydrogen, and similarly for all the atomic
masses that are close to an integer multiple of the mass of hydrogen. But
what about copper, for instance, which had an atomic mass 63.5 times that
of hydrogen? It didn’t seem reasonable to think that it possessed an extra
half of a neutron! The solution was found by measuring the mass-to-charge
ratios of singly-ionized atoms (atoms with one electron removed). The
technique is essentially that same as the one used by Thomson for cathode
rays, except that whole atoms do not spontaneously leap out of the surface
of an object as electrons sometimes do. The figure shows an example of how
the ions can be created and injected between the charged plates for acceleration.
Injecting a stream of copper ions into the device, we find a surprise —
the beam splits into two parts! Chemists had elevated to dogma the assumption
that all the atoms of a given element were identical, but we find that
69% of copper atoms have one mass, and 31% have another. Not only
that, but both masses are very nearly integer multiples of the mass of
hydrogen (63 and 65, respectively). Copper gets its chemical identity from
the number of protons in its nucleus, 29, since chemical reactions work by
electric forces. But apparently some copper atoms have 63-29=34 neutrons
while others have 65-29=36. The atomic mass of copper, 63.5, reflects the
proportions of the mixture of the mass-63 and mass-65 varieties. The
different mass varieties of a given element are called isotopes of that element.
Isotopes can be named by giving the mass number as a subscript to the
left of the chemical symbol, e.g. 65Cu. Examples:
protons neutrons mass number
1H 1 0 0+1=1
4He 2 2 2+2=4
12C 6 6 6+6=12
14C 6 8 6+8=14
262Ha 105 157 105+157=262
A version of the Thomson apparatus
modified for measuring the mass-tocharge
ratios of ions rather than electrons.
A small sample of the element
in question, copper in our example, is
boiled in the oven to create a thin vapor.
(A vacuum pump is continuously
sucking on the main chamber to keep
it from accumulating enough gas to
stop the beam of ions.) Some of the
atoms of the vapor are ionized by a
spark or by ultraviolet light. Ions that
wander out of the nozzle and into the
region between the charged plates are
then accelerated toward the top of the
figure. As in the Thomson experiment,
mass-to-charge ratios are inferred
from the deflection of the beam.
extra charged plates
or magnets for deflecting
the beam
+ + + + + +
– – – – – –
oven
vacuum chamber
Chapter 2 The Nucleus
55
Self-Check
Why are the positive and negative charges of the accelerating plates reversed
in the isotope-separating apparatus compared to the Thomson apparatus?
Chemical reactions are all about the exchange and sharing of electrons:
the nuclei have to sit out this dance because the forces of electrical repulsion
prevent them from ever getting close enough to make contact with each
other. Although the protons do have a vitally important effect on chemical
processes because of their electrical forces, the neutrons can have no effect
on the atom’s chemical reactions. It is not possible, for instance, to separate
63Cu from 65Cu by chemical reactions. This is why chemists had never
realized that different isotopes existed. (To be perfectly accurate, different
isotopes do behave slightly differently because the more massive atoms
move more sluggishly and therefore react with a tiny bit less intensity. This
tiny difference is used, for instance, to separate out the isotopes of uranium
needed to build a nuclear bomb. The smallness of this effect makes the
separation process a slow and difficult one, which is what we have to thank
for the fact that nuclear weapons have not been built by every terrorist cabal
on the planet.)
Sizes and shapes of nuclei
Matter is nearly all nuclei if you count by weight, but in terms of
volume nuclei don’t amount to much. The radius of an individual neutron
or proton is very close to 1 fm (1 fm=10-15 m), so even a big lead nucleus
with a mass number of 208 still has a diameter of only about 13 fm, which
is ten thousand times smaller than the diameter of a typical atom. Contrary
to the usual imagery of the nucleus as a small sphere, it turns out that many
nuclei are somewhat elongated, like an American football, and a few have
exotic asymmetric shapes like pears or kiwi fruits.
Discussion question
Suppose the entire universe was in a (very large) cereal box, and the nutritional
labeling was supposed to tell a godlike consumer what percentage of the
contents was nuclei. Roughly what would the percentage be like if the labeling
was according to mass? What if it was by volume?
Thomson was accelerating electrons, which are negatively charged. This apparatus is supposed to accelerate
atoms with one electron stripped off, which have positive net charge. In both cases, a particle that is between the
plates should be attracted by the forward plate and repelled by the plate behind it.
Section 2.4 The Structure of Nuclei
56
2.5 The Strong Nuclear Force, Alpha Decay and Fission
Once physicists realized that nuclei consisted of positively charged
protons and uncharged neutrons, they had a problem on their hands. The
electrical forces among the protons are all repulsive, so the nucleus should
simply fly apart! The reason all the nuclei in your body are not spontaneously
exploding at this moment is that there is another force acting. This
force, called the strong nuclear force, is always attractive, and acts between
neutrons and neutrons, neutrons and protons, and protons and protons
with roughly equal strength. The strong nuclear force does not have any
effect on electrons, which is why it does not influence chemical reactions.
Unlike the electric forces, whose strengths are given by the simple
Coulomb force law, there is no simple formula for how the strong nuclear
force depends on distance. Roughly speaking, it is effective over ranges of
~1 fm, but falls off extremely quickly at larger distances (much faster than
1/r2). Since the radius of a neutron or proton is about 1 fm, that means that
when a bunch of neutrons and protons are packed together to form a
nucleus, the strong nuclear force is effective only between neighbors.
The figure illustrates how the strong nuclear force acts to keep ordinary
nuclei together, but is not able to keep very heavy nuclei from breaking
apart. In (a), a proton in the middle of a carbon nucleus feels an attractive
strong nuclear force (arrows) from each of its nearest neighbors. The forces
are all in different directions, and tend to cancel out. The same is true for
the repulsive electrical forces (not shown). (b) A proton at the edge of the
nucleus has neighbors only on one side, and therefore all the strong nuclear
forces acting on it are tending to pull it back in. Although all the electrical
forces from the other five protons (dark arrows) are all pushing it out of the

Chapter 2 The Nucleus
57
nucleus, they are not sufficient to overcome the strong nuclear forces.
In a very heavy nucleus, (c), a proton that finds itself near the edge has
only a few neighbors close enough to attract it significantly via the strong
nuclear force, but every other proton in the nucleus exerts a repulsive
electrical force on it. If the nucleus is large enough, the total electrical
repulsion may be sufficient to overcome the attraction of the strong force,
and the nucleus may spit out a proton. Proton emission is fairly rare,
however; a more common type of radioactive decay in heavy nuclei is alpha
decay, shown in (d). The imbalance of the forces is similar, but the chunk
that is ejected is an alpha particle (two protons and two neutrons) rather
than a single proton.
It is also possible for the nucleus to split into two pieces of roughly
equal size, (e), a process known as fission.
When a nucleus is able to undergo one of these processes, it is said to be
radioactive, and to undergo radioactive decay. Some of the naturally
occurring nuclei on earth are radioactive. The term “radioactive” comes
from Becquerel’s image of rays radiating out from something, not from
radio waves, which are a whole different phenomenon. The term “decay”
can also be a little misleading, since it implies that the nucleus turns to dust
or simply disappears — actually it is splitting into two new nuclei with an
the same total number of neutrons and protons, so the term “radioactive
transformation” would have been more appropriate. Although the original
atom’s electrons are mere spectators in the process of weak radioactive
decay, we often speak loosely of “radioactive atoms” rather than “radioactive
nuclei.”
Randomness in physics
How does an atom decide when to decay? We might imagine that it is
like a termite-infested house that gets weaker and weaker, until finally it
reaches the day on which it is destined to fall apart. Experiments, however,
have not succeeded in detecting such “ticking clock” hidden below the
surface; the evidence is that all atoms of a given isotope are absolutely
identical. Why, then, would one uranium atom decay today while another
lives for another million years? The answer appears to be that it is entirely
random. We can make general statements about the average time required
for a certain isotope to decay, or how long it will take for half the atoms in a
sample to decay (its half-life), but we can never predict the behavior of a
particular atom.
This is the first example we have encountered of an inescapable randomness
in the laws of physics. If this kind of randomness makes you
uneasy, you’re in good company. Einstein’s famous quote is “…I am
convinced that He [God] does not play dice.” Einstein’s distaste for
randomness, and his association of determinism with divinity, goes back to
the Enlightenment conception of the universe as a gigantic piece of clockwork
that only had to be set in motion initially by the Builder. Physics had
to be entirely rebuilt in the 20th century to incorporate the fundamental
randomness of physics, and this modern revolution is the topic of book 6 of
this series. In particular, we will delay the mathematical development of the
half-life concept until then.
Section 2.5 The Strong Nuclear Force, Alpha Decay and Fission
58
2.6 The Weak Nuclear Force; Beta Decay
All the nuclear processes we’ve discussed so far have involved rearrangements
of neutrons and protons, with no change in the total number of
neutrons or the total number of protons. Now consider the proportions of
neutrons and protons in your body and in the planet earth: neutrons and
protons are roughly equally numerous in your body’s carbon and oxygen
nuclei, and also in the nickel and iron that make up most of the earth. The
proportions are about 50-50. But the only chemical elements produced in
any significant quantities by the big bang were hydrogen (about 90%) and
helium (about 10%). If the early universe was almost nothing but hydrogen
atoms, whose nuclei are protons, where did all those neutrons come from?
The answer is that there is another nuclear force, the weak nuclear
force, that is capable of transforming neutrons into protons and vice-versa.
Two possible reactions are
n ® p + e– + n (electron decay)
and
p ® n + e+ + n . (positron decay)
(There is also a third type called electron capture, in which a proton grabs
one of the atom’s electrons and they produce a neutron and a neutrino.)
Whereas alpha decay and fission are just a redivision of the previously
existing particles, these reactions involve the destruction of one particle and
the creation of three new particles that did not exist before.
There are three new particles here that you have never previously
encountered. The symbol e+ stands for an antielectron, which is a particle
just like the electron in every way, except that its electric charge is positive
rather than negative. Antielectrons are also known as positrons. Nobody
knows why electrons are so common in the universe and antielectrons are
scarce. When an antielectron encounters an electron, they annihilate each
other, and this is the fate of all the antielectrons that are produced by
natural radioactivity on earth.
The notation n stands for a particle called a neutrino, and n means an
antineutrino. Neutrinos and antineutrinos have no electric charge (hence
the name).
We can now list all four of the known fundamental forces of physics:
gravity
electromagnetism
strong nuclear force
weak nuclear force
The other forces we have learned about, such as friction and the normal
Chapter 2 The Nucleus
59
A billion of them pass through your body every microsecond,
but until recently almost nothing was known
about the particles called neutrinos. Produced as a sideeffect
of the nuclear reactions that power our sun and
other stars, these ghostlike bits of matter are believed
to be the most numerous particles in the universe. But
they interact so weakly with ordinary matter that nearly
all the neutrinos that enter the earth on one side will
emerge from the other side of our planet without even
slowing down.
Our first real peek at the properties of the elusive neutrino
has come from a huge detector in a played-out
Japanese zinc mine. An international team of physicists
outfitted the mineshaft with wall-to-wall light sensors,
and then filled the whole thing with water so pure
that you can see through it for a hundred meters, compared
to only a few meters for typical tap water. Neutrinos
stream through the 50 million liters of water continually,
just as they flood everything else around us,
and the vast majority never interact with a water molecule.
A very small percentage, however, do annihilate
themselves in the water, and the tiny flashes of light
they produce can be detected by the beachball-sized
vacuum tubes that line the darkened mineshaft. Most
of the neutrinos around us come from the sun, but for
technical reasons this type of water-based detector is
more sensitive to the less common but more energetic
neutrinos produced when cosmic ray particles strike
the earth’s atmosphere.
Neutrinos were already known to come in three “flavors,”
which can be distinguished from each other by
the particles created when they collide with matter. An
“electron-flavored neutrino” creates an ordinary electron
when it is annihilated, while the two other types
create more exotic particles called mu and tau particles.
Think of the three types of neutrinos as chocolate, vanilla,
and strawberry. When you buy a chocolate ice
cream cone, you expect that it will keep being chocolate
as you eat it. The unexpected finding from the Japanese
experiment is that some of the neutrinos are
changing flavor between the time when they are produced
by a cosmic ray and the moment when they wink
out of existence in the water. It’s as though your chocolate
ice cream cone transformed itself magically into
strawberry while your back was turned.
Here’s how it worked. The experiment detects some
neutrinos originating in the atmosphere above Japan,
and also many neutrinos coming from distant parts of
the earth. A neutrino created above the Atlantic Ocean
arrives in Japan from underneath, and the experiment
can distinguish these upward-traveling neutrinos from
the downward-moving local variety. They found that the
mixture of neutrinos coming from below was different
from the mixture arriving from above, with some of the
electron-flavored and tau-flavored neutrinos having
apparently changed into mu-flavored neutrinos during
their voyage through the earth. The ones coming from
above didn’t have time to change flavors on their much
shorter journey.
This is interpreted as evidence that the neutrinos are
vibrating back and forth among the three flavors, like a
rope vibrating back and forth as a wave passes through
it. On theoretical grounds, it is believed that such a vibration
can only occur if neutrinos have mass. Only a
rough estimate of the mass is possible at this point: it
appears that neutrinos have a mass somewhere in the
neighborhood of one billionth of the mass of an electron,
or about 10-39 kg.
If the neutrino’s mass is so tiny, does it even matter?
The answer from cosmologists is a resounding yes.
Although a single neutrino’s mass may not amount to
much, they are so numerous that they may have had a
decisive effect on the gravitational forces that have
molded the evolution of the universe from the big bang
to the present time.
60
force, all arise from electromagnetic interactions between atoms, and
therefore are not considered to be fundamental forces of physics.
Example: decay of 212Pb
As an example, consider the radioactive isotope of lead 212Pb. It
contains 82 protons and 130 neutrons. It decays by the process
n ® p + e– + n . The newly created proton is held inside the
nucleus by the strong nuclear force, so the new nucleus contains
83 protons and 129 neutrons. Having 83 protons makes it the
element bismuth, so it will be an atom of 212Bi.
In a reaction like this one, the electron flies off at high speed (typically
close to the speed of light), and the escaping electrons are the things that
make large amounts of this type of radioactivity dangerous. The outgoing
electron was the first thing that tipped off scientists in the early 1900s to
the existence of this type of radioactivity. Since they didn’t know that the
outgoing particles were electrons, they called them beta particles, and this
type of radioactive decay was therefore known as beta decay. A clearer but
less common terminology is to call the two processes electron decay and
positron decay.
The antineutrino pretty much ignores all matter, because its lack of
charge makes it immune to electrical forces, and it also remains aloof from
strong nuclear interactions. Even if it happens to fly off going straight
down, it is almost certain to make it through the entire earth without
interacting with any atoms in any way. It ends up flying through outer
space forever. The neutrino’s behavior makes it exceedingly difficult to
detect, and when beta decay was first discovered nobody realized that
neutrinos even existed. We now know that the neutrino carries off some of
the energy produced in the reaction, but at the time it seemed that the total
energy afterwards (not counting the unsuspected neutrino’s energy) was
greater than the total energy before the reaction, violating conservation of
energy. Physicists were getting ready to throw conservation of energy out
the window as a basic law of physics when indirect evidence led them to the
conclusion that neutrinos existed.
Chapter 2 The Nucleus
61
Discussion questions
A. In the reactions n ® p + e– + n and p ® n + e+ + n, verify that charge is
conserved. In beta decay, when one of these reactions happens to a neutron
or proton within a nucleus, one or more gamma rays may also be emitted.
Does this affect conservation of charge? Would it be possible for some extra
electrons to be released without violating charge conservation?
B. When an antielectron and an electron annihilate each other, they produce
two gamma rays. Is charge conserved in this reaction?
2.7 Fusion
As we have seen, heavy nuclei tend to fly apart because each proton is
being repelled by every other proton in the nucleus, but is only attracted by
its nearest neighbors. The nucleus splits up into two parts, and as soon as
those two parts are more than about 1 fm apart, the strong nuclear force no
longer causes the two fragments to attract each other. The electrical repulsion
then accelerates them, causing them to gain a large amount of kinetic
energy. This release of kinetic energy is what powers nuclear reactors and
fission bombs.
It might seem, then, that the lightest nuclei would be the most stable,
but that is not the case. Let’s compare an extremely light nucleus like 4He
with a somewhat heavier one, 16O. A neutron or proton in 4He can be
attracted by the three others, but in 16O, it might have five or six neighbors
attracting it. The 16O nucleus is therefore more stable.
It turns out that the most stable nuclei of all are those around nickel
and iron, having about 30 protons and 30 neutrons. Just as a nucleus that is
too heavy to be stable can release energy by splitting apart into pieces that
are closer to the most stable size, light nuclei can release energy if you stick
them together to make bigger nuclei that are closer to the most stable size.
Fusing one nucleus with another is called nuclear fusion. Nuclear fusion is
what powers our sun and other stars.
This array of gamma-ray detectors, called GAMMASPHERE,
is currently housed at Argonne National Laboratory, in Illinois.
During operation, the array is closed up, and a beam of ions
produced by a particle accelerator strikes a target at its center,
producing nuclear fusion reactions. The gamma rays can
be studied for information about the structure of the fused
nuclei, which are typically varieties not found in nature. The
barrel-shaped part behind the scientist is a mass separator
used for identifying the type of nucleus formed in the reaction
after it recoils out of GAMMASPHERE.
Section 2.7 Fusion
62
2.8 Nuclear Energy and Binding Energies
In the same way that chemical reactions can be classified as exothermic
(releasing energy) or endothermic (requiring energy to react), so nuclear
reactions may either release or use up energy. The energies involved in
nuclear reactions are greater by a huge factor. Thousands of tons of coal
would have to be burned to produce as much energy as would be produced
in a nuclear power plant by one kg of fuel.
Although nuclear reactions that use up energy (endothermic reactions)
can be initiated in accelerators, where one nucleus is rammed into another
at high speed, they do not occur in nature, not even in the sun. The
amount of kinetic energy required is simply not available.
To find the amount of energy consumed or released in a nuclear
reaction, you need to know how much potential energy was stored or
released. Experimentalists have determined the amount of potential energy
stored in the nucleus of every stable element, as well as many unstable
elements. This is the amount of mechanical work that would be required to
pull the nucleus apart into its individual neutrons and protons, and is
known as the nuclear binding energy.
Example: a reaction occurring in the sun
The sun produces its energy through a series of nuclear fusion
reactions. One of the reactions is
1H + 2H ® 3He + g
The excess energy is almost all carried off by the gamma ray
(not by the kinetic energy of the helium-3 atom). The binding
energies in units of pJ (picojoules) are:
1H 0 J
2H 0.35593 pJ
3He 1.23489 pJ
The total initial potential energy is 0 pJ+0.35593 pJ, and the final
potential energy is 1.23489 pJ, so by conservation of energy, the
gamma ray must carry off 0.87896 pJ of energy. The gamma ray
is then absorbed by the sun and converted to heat.
Self-Check
Why is the binding energy of 1H exactly equal to zero?
The hydrogen-1 nucleus is simply a proton. The binding energy is the energy required to tear a nucleus apart, but
for a nucleus this simple there is nothing to tear apart.
Chapter 2 The Nucleus
63
Optional topic: conversion of mass to energy and energy to mass
If you add up the masses of the three particles produced
in the reaction n ® p + e– +n , you will find that
they do not equal the mass of the neutron, so mass is
not conserved. An even more blatant example is the
annihilation of an electron with a positron, e– + e+ ® 2g,
in which the original mass is completely destroyed, since
gamma rays have no mass. Nonconservation of mass
is not just a property of nuclear reactions. It also occurs
in chemical reactions, but the change in mass is too
small to detect with ordinary laboratory balances.
The reason why mass is not being conserved is that
mass is being converted to energy, according to
Einstein’s celebrated equation E=mc2, in which c stands
for the speed of light. In the reaction e– + e+ ® 2g, for
instance, imagine for simplicity that the electron and
positron are moving very slowly when they collide, so
there is no significant amount of energy to start with.
We are starting with mass and no energy, and ending
up with two gamma rays that possess energy but no
mass. Einstein’s E=mc2 tells us that the conversion factor
between mass and energy is equal to the square of
the speed of light. Since c is a big number, the amount
of energy consumed or released by a chemical reaction
only shows up as a tiny change in mass. But in
nuclear reactions, which involve large amounts of energy,
the change in mass may amount to as much as
one part per thousand. Note that in this context, c is not
necessarily the speed of any of the particles. We are
just using its numerical value as a conversion factor.
Note also that E=mc2 does not mean that an object of
mass m has a kinetic energy equal to mc2; the energy
being described by E=mc2 is the energy you could release
if you destroyed the particle and converted its
mass entirely into energy, and that energy would be in
addition to any kinetic or potential energy the particle
had.
Have we now been cheated out of two perfectly good
conservation laws, the laws of conservation of mass
and of energy? No, it’s just that according to Einstein,
the conserved quantity is E+mc2, not E or m individually.
The quantity E+mc2 is referred to as the massenergy,
and no violation of the law of conservation of
mass-energy has yet been observed. In most practical
situations, it is a perfectly reasonable to treat mass and
energy as separately conserved quantities.
It is now easy to explain why isolated protons (hydrogen
nuclei) are found in nature, but neutrons are only
encountered in the interior of a nucleus, not by themselves.
In the process n ® p + e– +n , the total final
mass is less than the mass of the neutron, so mass is
being converted into energy. In the beta decay of a proton,
p ® n + e+ + n, the final mass is greater than the
initial mass, so some energy needs to be supplied for
conversion into mass. A proton sitting by itself in a hydrogen
atom cannot decay, since it has no source of
energy. Only protons sitting inside nuclei can decay,
and only then if the difference in potential energy between
the original nucleus and the new nucleus would
result in a release of energy. But any isolated neutron
that is created in natural or artificial reactions will decay
within a matter of seconds, releasing some energy.
The equation E=mc2 occurs naturally as part of
Einstein’s theory of special relativity, which is not what
we are studying right now. This brief treatment is only
meant to clear up the issue of where the mass was
going in some of the nuclear reactions we were discussing.
Section 2.8 Nuclear Energy and Binding Energies
64
The figure above is a compact way of showing the vast variety of the
nuclei. Each box represents a particular number of neutrons and protons.
The black boxes are nuclei that are stable, i.e. that would require an input of
energy in order to change into another. The gray boxes show all the unstable
nuclei that have been studied experimentally. Some of these last for billions
of years on the average before decaying and are found in nature, but most
have much shorter average lifetimes, and can only be created and studied in
the laboratory.
The curve along which the stable nuclei lie is called the line of stability.
Nuclei along this line have the most stable proportion of neutrons to
protons. For light nuclei the most stable mixture is about 50-50, but we can
see that stable heavy nuclei have two or three times more neutrons than
protons. This is because the electrical repulsions of all the protons in a
heavy nucleus add up to a powerful force that would tend to tear it apart.
The presence of a large number of neutrons increases the distances among
the protons, and also increases the number of attractions due to the strong
nuclear force.
nuclei that decay toward the
line of stability by
p ® n + e+ + n
nuclei that
undergo
alpha
decay
or fission
number of neutrons
number of protons
nuclei that
decay toward the
line of stability by
n ® p + e– + n
Chapter 2 The Nucleus
65
2.9 Biological Effects of Ionizing Radiation
As a science educator, I find it frustrating that nowhere in the massive
amount of journalism devoted to the Chernobyl disaster does one ever find
any numerical statements about the amount of radiation to which people
have been exposed. Anyone mentally capable of understanding sports
statistics or weather reports ought to be able to understand such measurements,
as long as something like the following explanatory text was inserted
somewhere in the article:
Radiation exposure is measured in units of millirems. The average
person is exposed to about 100 millirems each year from natural background
sources.
With this context, people would be able to come to informed conclusions
based on statements such as, “Children in Finland received an average
dose of ___________ millirems above natural background levels because of
the Chernobyl disaster.”
A millirem, or mrem, is, of course, a thousandth of a rem, but what is a
rem? It measures the amount of energy per kilogram deposited in the body
by ionizing radiation, multiplied by a “quality factor” to account for the
different health hazards posed by alphas, betas, gammas, neutrons, and
other types of radiation. Only ionizing radiation is counted, since nonionizing
radiation simply heats one’s body rather than killing cells or altering
DNA. For instance, alpha particles are typically moving so fast that their
kinetic energy is sufficient to ionize thousands of atoms, but it is possible
for an alpha particle to be moving so slowly that it would not have enough
kinetic energy to ionize even one atom.
Notwithstanding the pop culture images of the Incredible Hulk and
Godzilla, it is not possible for a multicellular animal to become “mutated”
as a whole. In most cases, a particle of ionizing radiation will not even hit
the DNA, and even if it does, it will only affect the DNA of a single cell,
not every cell in the animal’s body. Typically, that cell is simply killed,
because the DNA becomes unable to function properly. Once in a while,
however, the DNA may be altered so as to make that cell cancerous. For
instance, skin cancer can be caused by UV light hitting a single skin cell in
the body of a sunbather. If that cell becomes cancerous and begins reproducing
uncontrollably, she will end up with a tumor twenty years later.
Other than cancer, the only other dramatic effect that can result from
altering a single cell’s DNA is if that cell happens to be a sperm or ovum,
which can result in nonviable or mutated offspring. Men are relatively
immune to reproductive harm from radiation, because their sperm cells are
replaced frequently. Women are more vulnerable because they keep the
same set of ova as long as they live.
A whole-body exposure of 500,000 mrem will kill a person within a
week or so. Luckily, only a small number of humans have ever been exposed
to such levels: one scientist working on the Manhattan Project, some
victims of the Nagasaki and Hiroshima explosions, and 31 workers at
Chernobyl. Death occurs by massive killing of cells, especially in the bloodproducing
cells of the bone marrow.
Section 2.9 Biological Effects of Ionizing Radiation
66
Lower levels, on the order of 100,000 mrem, were inflicted on some
people at Nagasaki and Hiroshima. No acute symptoms result from this
level of exposure, but certain types of cancer are significantly more common
among these people. It was originally expected that the radiation would
cause many mutations resulting in birth defects, but very few such inherited
effects have been observed.
A great deal of time has been spent debating the effects of very low
levels of ionizing radiation. A medical x-ray, for instance, may result in a
dose on the order of 100 mrem above background, i.e. a doubling of the
normal background level. Similar doses in excess of the average background
level may be received by people living at high altitudes or people with high
concentrations of radon gas in their houses. Unfortunately (or fortunately,
depending on how you look at it), the added risks of cancer or birth defects
resulting from these levels of exposure are extremely small, and therefore
nearly impossible to measure. As with many suspected carcinogenic chemicals,
the only practical method of estimating risks is to give laboratory
animals doses many orders of magnitude greater, and then assume that the
health risk is directly proportional to the dose. Under these assumptions,
the added risk posed by a dental x-ray or radon in one’s basement is negligible
on a personal level, and is only significant in terms of a slight increase
in cancer throughout the population. As a matter of social policy, excess
radiation exposure is not a significant public health problem compared to
car accidents or tobacco smoking.
Discussion questions
A. Should the quality factor for neutrinos be very small, because they mostly
don’t interact with your body?
B. Would an alpha source be likely to cause different types of cancer depending
on whether the source was external to the body or swallowed in contaminated
food? What about a gamma source?
Chapter 2 The Nucleus
67
2.10* The Creation of the Elements
Creation of hydrogen and helium in the Big Bang
We have discussed in book 3 of this series the evidence for the Big Bang
theory of the origin of the universe. Did all the chemical elements we’re
made of come into being in the Big Bang? The answer is definitely no, since
the temperatures in the first microseconds after the Big Bang were so high
that atoms and nuclei could not hold together at all. Even after things had
cooled down enough for nuclei and atoms to exist, theorists are sure that
the only elements created were hydrogen and helium.
We are stardust
In that case, where did all the other elements come from? Astronomers
came up with the answer. By studying the combinations of wavelengths of
light, called spectra, emitted by various stars, they had been able to determine
what kinds of atoms they contained. (We will have more to say about
spectra in book 6.) They found that the stars fell into two groups. One type
was nearly 100% hydrogen and helium, while the other contained 99%
hydrogen and helium and 1% other elements. They interpreted these as two
generations of stars. The first generation had formed out of clouds of gas
that came fresh from the big bang, and their composition reflected that of
the early universe. The nuclear fusion reactions by which they shine have
mainly just increased the proportion of helium relative to hydrogen,
without making any heavier elements.
The members of the first generation that we see today, however, are
only those that lived a long time. Small stars are more miserly with their
fuel than large stars, which have short lives. The large stars of the first
generation have already finished their lives. Near the end of its lifetime, a
star runs out hydrogen fuel and undergoes a series of violent and spectacular
reorganizations as it fuses heavier and heavier elements. Very large stars
finish this sequence of events by undergoing supernova explosions, in which
some of their material is flung off into the void while the rest collapses into
an exotic object such as a black hole or neutron star.
The second generation of stars, of which our own sun is an example,
condensed out of clouds of gas that had been enriched in heavy elements
due to supernova explosions. It is those heavy elements that make up our
planet and our bodies.
Section 2.10* The Creation of the Elements
68
Artificial synthesis of heavy elements
Elements up to uranium, atomic number 92, were created by these
astronomical processes. Beyond that, the increasing electrical repulsion of
the protons leads to shorter and shorter half-lives. Even if a supernova a
billion years ago did create some quantity of an element such as Berkelium,
number 97, there would be none left in the Earth’s crust today. The heaviest
elements have all been created by artificial fusion reactions in accelerators.
The heaviest element that has been reported in a published scientific paper
is 112, but as of 1999 scientists at Berkeley and Dubna have announced the
creation of 114 and 118 as well.
Although the creation of a new element, i.e. an atom with a novel
number of protons, has historically been considered a glamorous accomplishment,
to the nuclear physicist the creation of an atom with a hitherto
unobserved number of neutrons is equally important. The greatest neutron
number reached so far is 179. One tantalizing goal of this type of research is
the theoretical prediction that there might be an island of stability beyond
the previously explored tip of the chart of the nuclei shown in section 2.8.
Just as certain numbers of electrons lead to the chemical stability of the
noble gases (helium, neon, argon, …), certain numbers of neutrons and
protons lead to a particularly stable packing of orbits. Calculations dating
back to the 1960’s have hinted that there might be relatively stable nuclei
having approximately 114 protons and 184 neutrons. Proton number 114
has been achieved, and indeed displays an amazingly long half-life of 30
seconds. This may not seem like very long, but lifetimes in the microsecond
range are more typical for the superheavy elements that have previously
been discovered. There is even speculation that certain superheavy elements
would be stable enough to be produced in quantities that could for instance
be weighed and used in chemical reactions.
Top left: Construction of the UNILAC
accelerator in Germany, one of whose
uses is for experiments to create very
heavy artificial elements.
Top right: This formidable-looking apparatus,
called SHIP, is really nothing
more than a glorified version of the
apparatus used by Thomson to determine
the velocity and mass-to-charge
ratios of a beam of unknown particles.
Nuclei from a beam of ions produced
by UNILAC strike a metal foil target,
and the nuclei produced in the resulting
fusion reaction recoil into ship,
which is connected to the “downstream”
end of the accelerator. A typical
experiment runs for several
months, and out of the billions of fusion
reactions induced during this
time, only one or two may result in the
production of superheavy atoms. In all
the rest, the fused nucleus breaks up
immediately. SHIP is used to identify
the small number of “good” reactions
and separate them from this intense
background.
Chapter 2 The Nucleus
69
Summary
Selected Vocabulary
alpha particle …………………….. a form of radioactivity consisting of helium nuclei
beta particle ………………………. a form of radioactivity consisting of electrons
gamma ray………………………… a form of radioactivity consisting of a very high-frequency form of light
proton ……………………………… a positively charged particle, one of the types that nuclei are made of
neutron ……………………………. an uncharged particle, the other types that nuclei are made of
isotope ……………………………… one of the possible varieties of atoms of a given element, having a
certain number of neutrons
atomic number ………………….. the number of protons in an atom’s nucleus; determines what element
it is
atomic mass ………………………. the mass of an atom
mass number …………………….. the number of protons plus the number of neutrons in a nucleus;
approximately proportional to its atomic mass
strong nuclear force ……………. the force that holds nuclei together against electrical repulsion
weak nuclear force ……………… the force responsible for beta decay
beta decay …………………………. the radioactive decay of a nucleus via the reaction n ® p + e– + n  or
p ® n + e+ + n; so called because an electron or antielectron is also
known as a beta particle
alpha decay ……………………….. the radioactive decay of a nucleus via emission of an alpha particle
fission ………………………………. the radioactive decay of a nucleus by splitting into two parts
fusion ………………………………. a nuclear reaction in which two nuclei stick together to form one
bigger nucleus
millirem …………………………… a unit for measuring a person’s exposure to radioactivity
Notation
e– …………………………………….. an electron
e+ …………………………………….. an antielectron; just like an electron, but with positive charge
n……………………………………… a neutron
p……………………………………… a proton
n …………………………………….. a neutrino
n ……………………………………. an antineutrino
Notation Used in Other Books
Z …………………………………….. atomic number (number of protons in a nucleus)
N…………………………………….. number of neutrons in a nucleus
A …………………………………….. mass number (N+Z)
Summary
Rutherford and Marsden observed that some alpha particles from a beam striking a thin gold foil came
back at angles up to 180 degrees. This could not be explained in the then-favored raisin-cookie model of the
atom, and led to the adoption of the planetary model of the atom, in which the electrons orbit a tiny, positivelycharged
nucleus. Further experiments showed that the nucleus itself was a cluster of positively-charged
protons and uncharged neutrons.
Radioactive nuclei are those that can release energy. The most common types of radioactivity are alpha
decay (the emission of a helium nucleus), beta decay (the transformation of a neutron into a proton or viceversa),
and gamma decay (the emission of a type of very-high-frequency light). Stars are powered by nuclear
fusion reactions, in which two light nuclei collide and form a bigger nucleus, with the release of energy.
Human exposure to ionizing radiation is measured in units of millirem. The typical person is exposed to
about 100 mrem worth of natural background radiation per year.
Summary
70
S A solution is given in the back of the book. « A difficult problem.
3 A computerized answer check is available. ò A problem that requires calculus.
0.1 nm 0.1 nm
electron nucleus electron
Problem 1.
0.1 nm
0.1 nm
electron nucleus
electron
Homework Problems
1 3. A helium atom finds itself momentarily in this arrangement. Find
the direction and magnitude of the force acting on the right-hand electron.
The two protons in the nucleus are so close together (~1 fm) that
you can consider them as being right on top of each other.
2 3. The helium atom of problem 1 has some new experiences, goes
through some life changes, and later on finds itself in the configuration
shown here. What are the direction and magnitude of the force acting on
the bottom electron? (Draw a sketch to make clear the definition you are
using for the angle that gives direction.)
3. Suppose you are holding your hands in front of you, 10 cm apart.
(a3) Estimate the total number of electrons in each hand.
(b3) Estimate the total repulsive force of all the electrons in one hand on
all the electrons in the other.
(c) Why don’t you feel your hands repelling each other?
(d) Estimate how much the charge of a proton could differ in magnitude
from the charge of an electron without creating a noticeable force between
your hands.
4 3. Suppose that a proton in a lead nucleus wanders out to the surface of
the nucleus, and experiences a strong nuclear force of about 8 kN from the
nearby neutrons and protons pulling it back in. Compare this numerically
to the repulsive electrical force from the other protons, and verify that the
net force is attractive. A lead nucleus is very nearly spherical, and is about
6.5 fm in radius.
53. The subatomic particles called muons behave exactly like electrons,
except that a muon’s mass is greater by a factor of 206.77. Muons are
continually bombarding the Earth as part of the stream of particles from
space known as cosmic rays. When a muon strikes an atom, it can
displace one of its electrons. If the atom happens to be a hydrogen atom,
then the muon takes up an orbit that is on the average 206.77 times closer
to the proton than the orbit of the ejected electron. How many times
greater is the electric force experienced by the muon than that previously
felt by the electron?
6 S. The nuclear process of beta decay by electron capture is described
parenthetically in section 2.6. The reaction is p+e– ® n+n. (a) Show that
charge is conserved in this reaction. (b) Conversion between energy and
mass is discussed in an optional topic in section 2.8. Based on these ideas,
explain why electron capture doesn’t occur in hydrogen atoms. (If it did,
matter wouldn’t exist!)
Problem 2.
Chapter 2 The Nucleus
71
3 Circuits, Part 1
Madam, what good is a baby?
Michael Faraday, when asked by Queen Victoria
what the electrical devices in his lab were good for
A few years ago, my wife and I bought a house with Character, Character
being a survival mechanism that houses have evolved in order to convince
humans to agree to much larger mortgage payments than they’d
originally envisioned. Anyway, one of the features that gives our house
Character is that it possesses, built into the wall of the family room, a set of
three pachinko machines. These are Japanese gambling devices sort of like
vertical pinball machines. (The legal papers we got from the sellers hastened
to tell us that they were “for amusement purposes only.”) Unfortunately,
only one of the three machines was working when we moved in, and it soon
died on us. Having become a pachinko addict, I decided to fix it, but that
was easier said than done. The inside is a veritable Rube Goldberg mechanism
of levers, hooks, springs, and chutes. My hormonal pride, combined
with my Ph.D. in physics, made me certain of success, and rendered my
eventual utter failure all the more demoralizing.
Contemplating my defeat, I realized how few complex mechanical
Section
72
devices I used from day to day. Apart from our cars and my saxophone,
every technological tool in our modern life-support system was electronic
rather than mechanical.
3.1 Current
Unity of all types of electricity
We are surrounded by things we have been told are “electrical,” but it’s
far from obvious what they have in common to justify being grouped
together. What relationship is there between the way socks cling together
and the way a battery lights a lightbulb? We have been told that both an
electric eel and our own brains are somehow electrical in nature, but what
do they have in common?
British physicist Michael Faraday (1791-1867) set out to address this
problem. He investigated electricity from a variety of sources — including
electric eels! — to see whether they could all produce the same effects, such
as shocks and sparks, attraction and repulsion. “Heating” refers, for example,
to the way a lightbulb filament gets hot enough to glow and emit
light. Magnetically induction is an effect discovered by Faraday himself that
connects electricity and magnetism. We will not study this effect, which is
the basis for the electric generator, in detail until later in the book.
source of
electricity shocks sparks
attraction
and
repulsion heating
rubbing 3 3 3 3
battery 3 3 3 3
animal 3 3 (3) 3
magnetically
induced
3 3 3 3
The table shows a summary of some of Faraday’s results. Check marks
indicate that Faraday or his close contemporaries were able to verify that a
particular source of electricity was capable of producing a certain effect.
(They evidently failed to demonstrate attraction and repulsion between
objects charged by electric eels, although modern workers have studied
these species in detail and been able to understand all their electrical
characteristics on the same footing as other forms of electricity.)
Faraday’s results indicate that there is nothing fundamentally different
about the types of electricity supplied by the various sources. They are all
able to produce a wide variety of identical effects. Wrote Faraday, “The
general conclusion which must be drawn from this collection of facts is that
electricity, whatever may be its source, is identical in its nature.”
If the types of electricity are the same thing, what thing is that? The
Gymnotus carapo, a knifefish, uses
electrical signals to sense its environment
and to communicate with others
of its species.
Chapter 3 Circuits, Part 1
73
answer is provided by the fact that all the sources of electricity can cause
objects to repel or attract each other. We use the word “charge” to describe
the property of an object that allows it to participate in such electrical
forces, and we have learned that charge is present in matter in the form of
nuclei and electrons. Evidently all these electrical phenomena boil down to
the motion of charged particles in matter.
Electric current
If the fundamental phenomenon is the motion of charged particles,
then how can we define a useful numerical measurement of it? We might
describe the flow of a river simply by the velocity of the water, but velocity
will not be appropriate for electrical purposes because we need to take into
account how much charge the moving particles have, and in any case there
are no practical devices sold at Radio Shack that can tell us the velocity of
charged particles. Experiments show that the intensity of various electrical
effects is related to a different quantity: the number of coulombs of charge
that pass by a certain point per second. By analogy with the flow of water,
this quantity is called the electric current, I. Its units of coulombs/second are
more conveniently abbreviated as amperes, 1 A=1 C/s. (In informal speech,
one usually says “amps.”)
The main subtlety involved in this definition is how to account for the
two types of charge. The stream of water coming from a hose is made of
atoms containing charged particles, but it produces none of the effects we
associate with electric currents. For example, you do not get an electrical
shock when you are sprayed by a hose. This type of experiment shows that
the effect created by the motion of one type of charged particle can be
canceled out by the motion of the opposite type of charge in the same
direction. In water, every oxygen atom with a charge of +8e is surrounded
by eight electrons with charges of –e, and likewise for the hydrogen atoms.
We therefore refine our definition of current as follows:
definition of electric current
When charged particles are exchanged between regions of space
A and B, the electric current flowing from A to B is defined as
I = Dq / Dt ,
where Dq is the change in the total charge of region B.
In the garden hose example, your body picks up equal amounts of positive
and negative charge, resulting in no change in your total charge, so the
electrical current flowing into you is zero.
Mathematically, this is a definition involving a rate of change, very
similar to examples such as the rate of change of velocity, a=Dv/Dt, or the
rate of change of angular momentum, t=DL/Dt. You can therefore recycle
the hard lessons you learned in those cases: this definition will only make
sense when the rate of change is constant, and when the rate of change is
not constant, we have to change the definition to refer to the slope of the
tangent line on a graph of q versus t.
Section 3.1 Current
74
Na+
Na+
Cl–
Ca+2
A B C
Cl–
D
Example: Ions moving across a cell membrane
Question: The figures show ions, labeled with their charges,
moving in or out through the membranes of three cells. If the ions
all cross the membranes during the same interval of time, how
would the currents into the cells compare with each other?
Solution:
Cell A has positive current going into it because its charge is
increased, i.e. has a positive value of Dq.
Cell B has the same current as cell A, because by losing one
unit of negative charge it also ends up increasing its own total
charge by one unit.
Cell C’s total charge is reduced by three units, so it has a
large negative current going into it.
Cell D loses one unit of charge, so it has a small negative
current into it.
It may seem strange to say that a negatively charged particle going one
way creates a current going the other way, but this is quite ordinary. As we
will see, currents flow through metal wires via the motion of electrons,
which are negatively charged, so the direction of motion of the electrons in
a circuit is always opposite to the direction of the current. Of course it
would have been convenient of Benjamin Franklin had defined the positive
and negative signs of charge the opposite way, since so many electrical
devices are based on metal wires.
Example: Number of electrons flowing through a lightbulb
Question: If a lightbulb has 1.0 A flowing through it, how many
electrons will pass through the filament in 1.0 s?
Solution: We are only calculating the number of electrons that
flow, so we can ignore the positive and negative signs. Solving
the definition of current, I = Dq / Dt, for Dq = I Dt gives a charge of
1.0 C flowing in this time interval. The number of electrons is
number of electrons = col o mbs ´ electrons
coulomb
= col o mbs / coulombs
electron
= 1.0 C / e
= 6.2×1018
Chapter 3 Circuits, Part 1
75
3.2 Circuits
How can we put electric currents to work? The only method of controlling
electric charge we have studied so far is to charge different substances,
e.g. rubber and fur, by rubbing them against each other. Figure (a) shows an
attempt to use this technique to light a lightbulb. This method is unsatisfactory.
True, current will flow through the bulb, since electrons can move
through metal wires, and the excess electrons on the rubber rod will therefore
come through the wires and bulb due to the attraction of the positively
charged fur and the repulsion of the other electrons. The problem is that
after a zillionth of a second of current, the rod and fur will both have run
out of charge. No more current will flow, and the lightbulb will go out.
Figure (b) shows a setup that works. The battery pushes charge through
the circuit, and recycles it over and over again. (We will have more to say
later in this chapter about how batteries work.) This is called a complete
circuit. Today, the electrical use of the word “circuit” is the only one that
springs to mind for most people, but the original meaning was to travel
around and make a round trip, as when a circuit court judge would ride
around the boondocks, dispensing justice in each town on a certain date.
Note that an example like (c) does not work. The wire will quickly
begin acquiring a net charge, because it has no way to get rid of the charge
flowing into it. The repulsion of this charge will make it more and more
difficult to send any more charge in, and soon the electrical forces exerted
by the battery will be canceled out completely. The whole process would be
over so quickly that the filament would not even have enough time to get
hot and glow. This is known as an open circuit. Exactly the same thing
would happen if the complete circuit of figure (b) was cut somewhere with
a pair of scissors, and in fact that is essentially how an ordinary light switch
works: by opening up a gap in the circuit.
The definition of electric current we have developed has the great virtue
that it is easy to measure. In practical electrical work, one almost always
measures current, not charge. The instrument used to measure current is
called an ammeter. A simplified ammeter, (d), simply consists of a coiledwire
magnet whose force twists an iron needle against the resistance of a
spring. The greater the current, the greater the force. Although the construction
of ammeters may differ, their use is always the same. We break
into the path of the electric current and interpose the meter like a tollbooth
on a road, (e). There is still a complete circuit, and as far as the battery and
bulb are concerned, the ammeter is just another segment of wire.
Does it matter where in the circuit we place the ammeter? Could we,
for instance, have put it in the left side of the circuit instead of the right?
Conservation of charge tells us that this can make no difference. Charge is
not destroyed or “used up” by the lightbulb, so we will get the same current
reading on either side of it. What is “used up” is energy stored in the
battery, which is being converted into heat and light energy.
(a)
(b)
(c)
ammeter
(d)
(e)
Section 3.2 Circuits
76
3.3 Voltage
The volt unit
Electrical circuits can be used for sending signals, storing information,
or doing calculations, but their most common purpose by far is to manipulate
energy, as in the battery-and-bulb example of the previous section. We
know that lightbulbs are rated in units of watts, i.e. how many joules per
second of energy they can convert into heat and light, but how would this
relate to the flow of charge as measured in amperes? By way of analogy,
suppose your friend, who didn’t take physics, can’t find any job better than
pitching bales of hay. The number of calories he burns per hour will
certainly depend on how many bales he pitches per minute, but it will also
be proportional to how much mechanical work he has to do on each bale. If
his job is to toss them up into a hayloft, he will got tired a lot more quickly
than someone who merely tips bales off a loading dock into trucks. In
metric units,
jo ules
second
=
hay bales
second
´ jo ules
haybale
.
Similarly, the rate of energy transformation by a battery will not just
depend on how many coulombs per second it pushes through a circuit but
also on how much mechanical work it has to do on each coulomb of charge:
jo ules
second
= cou lombs
second
´ jo ules
coulomb
or
power = current ´ work per unit charge .
Units of joules per coulomb are abbreviated as volts, 1 V=1 J/C, named after
the Italian physicist Count Volta. Everyone knows that batteries are rated in
units of volts, but the voltage concept is more general than that; it turns out
that voltage is a property of every point in space. To gain more insight, let’s
think more carefully about what goes on in the battery and bulb circuit.
The voltage concept in general
To do work on a charged particle, the battery apparently must be
exerting forces on it. How does it do this? Well, the only thing that can
exert an electrical force on a charged particle is another charged particle. It’s
as though the haybales were pushing and pulling each other into the
hayloft! This is potentially a horribly complicated situation. Even if we
knew how much excess positive or negative charge there was at every point
in the circuit (which realistically we don’t) we would have to calculate
zillions of forces using Coulomb’s law, perform all the vector additions, and
finally calculate how much work was being done on the charges as they
moved along. To make things even more scary, there is more than one type
of charged particle that moves: electrons are what move in the wires and the
bulb’s filament, but ions are the moving charge carriers inside the battery.
Luckily, there are two ways in which we can simplify things:
Chapter 3 Circuits, Part 1
77
The situation is unchanging. Unlike the imaginary setup in which
we attempted to light a bulb using a rubber rod and a piece of fur,
this circuit maintains itself in a steady state (after perhaps a microsecond-
long period of settling down after the circuit is first assembled).
The current is steady, and as charge flows out of any area
of the circuit it is replaced by the same amount of charge flowing in.
The amount of excess positive or negative charge in any part of the
circuit therefore stays constant. Similarly, when we watch a river
flowing, the water goes by but the river doesn’t disappear.
Force depends only on position. Since the charge distribution is not
changing, the total electrical force on a charged particle depends
only on its own charge and on its location. If another charged
particle of the same type visits the same location later on, it will feel
exactly the same force.
The second observation tells us that there is nothing all that different
about the experience of one charged particle as compared to another’s. If we
single out one particle to pay attention to, and figure out the amount of
work done on it by electrical forces as it goes from point A to point B along
a certain path, then this is the same amount of work that will be done on
any other charged particles of the same type as it follows the same path. For
the sake of visualization, let’s think about the path that starts at one terminal
of the battery, goes through the light bulb’s filament, and ends at the
other terminal. When an object experiences a force that depends only on its
position (and when certain other, technical conditions are satisfied), we can
define a potential energy associated with the position of that object. The
amount of work done on the particle by electrical forces as it moves from A
to B equals the drop in electrical potential energy between A and B. This
potential energy is what is being converted into other forms of energy such
as heat and light. We therefore define voltage in general as electrical potential
energy per unit charge:
definition of voltage difference
The difference in voltage between two points in space is defined as
DV = DPEelec / q ,
where DPEelec is the change in the potential energy of a particle with
charge q as it moves from the initial point to the final point.
The amount of power dissipated (i.e. rate at which energy is transformed by
the flow of electricity) is then given by the equation
P = I DV .
Section 3.3 Voltage
78
Example: Energy stored in a battery
Question: My old camcorder runs off of a big lead-acid battery
that is labeled 12 volts, 4 AH. The “AH” stands for ampere-hours.
What is the maximum amount of energy the battery can store?
Solution: An ampere-hour is a unit of current multiplied by a unit
of time. Current is charge per unit time, so an ampere-hour is in
fact a funny unit of charge:
(1 A)(1 hour) = (1 C/s)(3600 s)
= 3600 C
Now 3600 C is a huge number of charged particles, but the total
loss of potential energy will just be their total charge multiplied by
the voltage difference across which they move:
DPEelec = q DV
= (3600 C)(12 V)
= 43 kJ
Example: Units of volt-amps
Question: Doorbells are often rated in volt-amps. What does this
combination of units mean?
Solution: Current times voltage gives units of power, P=I DV, so
volt-amps are really just a nonstandard way of writing watts.
They are telling you how much power the doorbell requires.
Example: Power dissipated by a battery and bulb
Question: If a 9.0-volt battery causes 1.0 A to flow through a
lightbulb, how much power is dissipated?
Solution: The voltage rating of a battery tells us what voltage
difference DV it is designed to maintain between its terminals.
P = I DV
= 9.0 A×V
= 9.0   Cs
×JC
= 9.0 J/s
= 9.0 W
The only nontrivial thing in this problem was dealing with the
units. One quickly gets used to translating common combinations
like A.V into simpler terms.
Here are a few questions and answers about the voltage concept.
Question: OK, so what is voltage, really?
Answer: A device like a battery has positive and negative
charges inside it that push other charges around the outside
circuit. A higher-voltage battery has denser charges in it, which
will do more work on each charged particle that moves through
the outside circuit.
To use a gravitational analogy, we can put a paddlewheel at
the bottom of either a tall waterfall or a short one, but a kg of
water that falls through the greater gravitational potential energy
difference will have more energy to give up to the paddlewheel at
the bottom.
Chapter 3 Circuits, Part 1
79
Question: Why do we define voltage as electrical potential
energy divided by charge, instead of just defining it as electrical
potential energy?
Answer: One answer is that it’s the only definition that makes the
equation P =I DV work. A more general answer is that we want
to be able to define a voltage difference between any two points
in space without having to know in advance how much charge
the particles moving between them will have. If you put a ninevolt
battery on your tongue, then the charged particles that move
across your tongue and give you that tingly sensation are not
electrons but ions, which may have charges of +e, –2e, or
practically anything. The manufacturer probably expected the
battery to be used mostly in circuits with metal wires, where the
charged particles that flowed would be electrons with charges of
–e. If the ones flowing across your tongue happen to have
charges of –2e, the potential energy difference for them will be
twice as much, but dividing by their charge of –2e in the definition
of voltage will still give a result of 9 V.
Question: Are there two separate roles for the charged particles
in the circuit, a type that sits still and exerts the forces, and
another that moves under the influence of those forces?
Answer: No. Every charged particle simultaneously plays both
roles. Newton’s third law says that any particle that has an
electrical forces acting on it must also be exerting an electrical
force back on the other particle. There are no “designated
movers” or “designated force-makers.”
Question: Why does the definition of voltage only refer to
voltage differences?
Answer: It’s perfectly OK to define voltage as V=PEelec/q. But
recall that it is only differences in potential energy that have
direct physical meaning in physics. Similarly, voltage differences
are really more useful than absolute voltages. A voltmeter
measures voltage differences, not absolute voltages.
Discussion Questions
A. A roller coaster is sort of like an electric circuit, but it uses gravitational
forces on the cars instead of electric ones. What would a high-voltage roller
coaster be like? What would a high-current roller coaster be like?
B. Criticize the following statements:
“He touched the wire, and 10000 volts went through him.”
“That battery has a charge of 9 volts.”
“You used up the charge of the battery.”
C. When you touch a 9-volt battery to your tongue, both positive and negative
ions move through your saliva. Which ions go which way?
D. I once touched a piece of physics apparatus that had been wired incorrectly,
and got a several-thousand-volt voltage difference across my hand. I was not
injured. For what possible reason would the shock have had insufficient power
to hurt me?
Section 3.3 Voltage
80
3.4 Resistance
Resistance
So far we have simply presented it as an observed fact that a batteryand-
bulb circuit quickly settles down to a steady flow, but why should it?
Newton’s second law, a=F/m, would seem to predict that the steady forces
on the charged particles should make them whip around the circuit faster
and faster. The answer is that as charged particles move through matter,
there are always forces, analogous to frictional forces, that resist the motion.
These forces need to be included in Newton’s second law, which is really
a=Ftotal/m, not a=F/m. If, by analogy, you push a crate across the floor at
constant speed, i.e. with zero acceleration, the total force on it must be zero.
After you get the crate going, the floor’s frictional force is exactly canceling
out your force. The chemical energy stored in your body is being transformed
into heat in the crate and the floor, and no longer into an increase
in the crate’s kinetic energy. Similarly, the battery’s internal chemical energy
is converted into heat, not into perpetually increasing the charged particles’
kinetic energy. Changing energy into heat may be a nuisance in some
circuits, such as a computer chip, but it is vital in a lightbulb, which must
get hot enough to glow. Whether we like it or not, this kind of heating
effect is going to occur any time charged particles move through matter.
What determines the amount of heating? One flashlight bulb designed
to work with a 9-volt battery might be labeled 1.0 watts, another 5.0. How
does this work? Even without knowing the details of this type of friction at
the atomic level, we can relate the heat dissipation to the amount of current
that flows via the equation P=IDV. If the two flashlight bulbs can have two
different values of P when used with a battery that maintains the same DV,
it must be that the 5.0-watt bulb allows five times more current to flow
through it.
For many substances, including the tungsten from which lightbulb
filaments are made, experiments show that the amount of current that will
flow through it is directly proportional to the voltage difference placed
across it. For an object made of such a substance, we define its electrical
resistance as follows:
definition of resistance
If an object inserted in a circuit displays a current flow which is
proportional to the voltage difference across it, we define its
resistance as the constant ratio
R = DV / I .
The units of resistance are volts/ampere, usually abbreviated as ohms,
symbolized with the capital Greek letter omega, W.
Chapter 3 Circuits, Part 1
81
Example: Resistance of a lightbulb
Question: A flashlight bulb powered by a 9-volt battery has a
resistance of 10 W. How much current will it draw?
Solution: Solving the definition of resistance for I, we find
I = DV / R
= 0.9 V/W
= 0.9 V/(V/A)
= 0.9 A
Ohm’s law states that many substances, including many solids and some
liquids, display this kind of behavior, at least for voltages that are not too
large. The fact that Ohm’s law is called a “law” should not be taken to mean
that all materials obey it, or that it has the same fundamental importance as
Newton’s laws, for example. Materials are called ohmic or nonohmic, depending
on whether they obey Ohm’s law.
If objects of the same size and shape made from two different ohmic
materials have different resistances, we can say that one material is more
resistive than the other, or equivalently that it is less conductive. Materials,
such as metals, that are very conductive are said to be good conductors.
Those that are extremely poor conductors, for example wood or rubber, are
classified as insulators. There is no sharp distinction between the two classes
of materials. Some, such as silicon, lie midway between the two extremes,
and are called semiconductors.
On an intuitive level, we can understand the idea of resistance by
making the sounds “hhhhhh” and “ffffff.” To make air flow out of your
mouth, you use your diaphragm to compress the air in your chest. The
pressure difference between your chest and the air outside your mouth is
analogous to a voltage difference. When you make the “h” sound, you form
your mouth and throat in a way that allows air to flow easily. The large flow
of air is like a large current. Dividing by a large current in the definition of
resistance means that we get a small resistance. We say that the small
resistance of your mouth and throat allows a large current to flow. When
you make the “f ” sound, you increase the resistance and cause a smaller
current to flow.
Note that although the resistance of an object depends on the substance
it is made of, we cannot speak simply of the “resistance of gold” or the
“resistance of wood.” The figures show four examples of objects that have
had wires attached at the ends as electrical connections. If they were made
of the same substance, they would all nevertheless have different resistances
because of their different sizes and shapes. A more detailed discussion will
be more natural in the context of the following chapter, but it should not be
too surprising that the resistance of (b) will be greater than that of (a) —
the image of water flowing through a pipe, however incorrect, gives us the
right intuition. Object (c) will have a smaller resistance than (a) because the
charged particles have less of it to get through.
(a)
(b)
(c)
(d)
Section 3.4 Resistance
82
Superconductors
All materials display some variation in resistance according to temperature
(a fact that is used in thermostats to make a thermometer that can be
easily interfaced to an electric circuit). More spectacularly, most metals have
been found to exhibit a sudden change to zero resistance when cooled to a
certain critical temperature. They are then said to be superconductors.
Theoretically, superconductors should make a great many exciting devices
possible, for example coiled-wire magnets that could be used to levitate
trains. In practice, the critical temperatures of all metals are very low, and
the resulting need for extreme refrigeration has made their use uneconomical
except for such specialized applications as particle accelerators for
physics research.
But scientists have recently made the surprising discovery that certain
ceramics are superconductors at less extreme temperatures. The technological
barrier is now in finding practical methods for making wire out of these
brittle materials. Wall Street is currently investing billions of dollars in
developing superconducting devices for cellular phone relay stations based
on these materials. In 2001, the city of Copenhagen replaced a short section
of its electrical power trunks with superconducing cables, and they are now
in operation and supplying power to customers.
There is currently no satisfactory theory of superconductivity in general,
although superconductivity in metals is understood fairly well. Unfortunately
I have yet to find a fundamental explanation of superconductivity in
metals that works at the introductory level.
Constant voltage throughout a conductor
The idea of a superconductor leads us to the question of how we should
expect an object to behave if it is made of a very good conductor. Superconductors
are an extreme case, but often a metal wire can be thought of as a
perfect conductor, for example if the parts of the circuit other than the wire
are made of much less conductive materials. What happens if R equals zero
in the equation R=DV/I? The result of dividing two numbers can only be
zero if the number on top equals zero. This tells us that if we pick any two
points in a perfect conductor, the voltage difference between them must be
zero. In other words, the entire conductor must be at the same voltage.
Constant voltage means that no work would be done on a charge as it
moved from one point in the conductor to another. If zero work was done
only along a certain path between two specific points, it might mean that
positive work was done along part of the path and negative work along the
A superconducting segment of the ATLAS accelerator at Argonne National Laboratory
near Chicago. It is used to accelerate beams of ions to a few percent of the
speed of light for nuclear physics reasearch. The shiny silver-colored surfaces are
made of the element niobium, which is a superconductor at relatively high temperatures
compared to other metals — relatively high meaning the temperature of liquid
helium! The beam of ions passes through the holes in the two small cylinders on
the ends of the curved rods. Charge is shuffled back and forth between them at a
frequency of 12 million cycles per second, so that they take turns being positive
and negative. The positively charged beam consists of short spurts, each timed so
that when it is in one of the segments it will be pulled forward by negative charge
on the cylinder in front of it and pushed forward by the positively charged one
behind. The huge currents involved would quickly melt any metal that was not
superconducting, but in a superconductor they produce no heat at all. My own PhD
thesis was based on data from this accelerator.
Chapter 3 Circuits, Part 1
83
rest, resulting in a cancellation. But there is no way that the work could
come out to be zero for all possible paths unless the electrical force on a
charge was in fact zero at every point. Suppose, for example, that you build
up a static charge by scuffing your feet on a carpet, and then you deposit
some of that charge onto a doorknob, which is a good conductor. How can
all that charge be in the doorknob without creating any electrical force at
any point inside it? The only possible answer is that the charge moves
around until it has spread itself into just the right configuration so that the
forces exerted by all the little bits of excess surface charge on any charged
particle within the doorknob exactly canceled out.
We can explain this behavior if we assume that the charge placed on the
doorknob eventually settles down into a stable equilibrium. Since the
doorknob is a conductor, the charge is free to move through it. If it was free
to move and any part of it did experience a nonzero total force from the rest
of the charge, then it would move, and we would not have an equilibrium.
It also turns out that charge placed on a conductor, once it reaches its
equilibrium configuration, is entirely on the surface, not on the interior. We
will not prove this fact formally, but it is intuitively reasonable. Suppose, for
instance, that the net charge on the conductor is negative, i.e. it has an
excess of electrons. These electrons all repel each other, and this repulsion
will tend to push them onto the surface, since being on the surface allows
them to be as far apart as possible.
Short circuits
So far we have been assuming a perfect conductor. What if it is a good
conductor, but not a perfect one? Then we can solve for DV=IR. An ordinary-
sized current will make a very small result when we multiply it by the
resistance of a good conductor such as a metal wire. The voltage throughout
the wire will then be nearly constant. If, on the other hand, the current is
extremely large, we can have a significant voltage difference. This is what
happens in a short-circuit: a circuit in which a low-resistance pathway
connects the two sides of a voltage source. Note that this is much more
specific than the popular use of the term to indicate any electrical malfunction
at all. If, for example, you short-circuit a 9-volt battery as shown in the
figure, you will produce perhaps a thousand amperes of current, leading to a
very large value of P=IDV. The wire gets hot!
Self-Check
What would happen to the battery in this kind of short circuit? [Answer on the
next page.]
Short-circuiting a battery. Warning: you
can burn yourself this way or start a
fire! If you want to try this, try making
the connection only very briefly, use a
low-voltage battery, and avoid touching
the battery or the wire, both of
which will get hot.
Section 3.4 Resistance
84
Resistors
Inside any electronic gadget you will see quite a few little circuit
elements like the one shown below. These resistors are simply a cylinder of
ohmic material with wires attached to the end.
At this stage, most students have a hard time understanding why
resistors would be used inside a radio or a computer. We obviously want a
lightbulb or an electric stove to have a circuit element that resists the flow of
electricity and heats up, but heating is undesirable in radios and computers.
Without going too far afield, let’s use a mechanical analogy to get a general
idea of why a resistor would be used in a radio.
The main parts of a radio receiver are an antenna, a tuner for selecting
the frequency, and an amplifier to strengthen the signal sufficiently to drive
a speaker. The tuner resonates at the selected frequency, just as in the
examples of mechanical resonance discussed in book 3. The behavior of a
mechanical resonator depends on three things: its inertia, its stiffness, and
the amount of friction or damping. The first two parameters locate the peak
of the resonance curve, while the damping determines the width of the
resonance. In the radio tuner we have an electrically vibrating system that
resonates at a particular frequency. Instead of a physical object moving back
and forth, these vibrations consist of electrical currents that flow first in one
direction and then in the other. In a mechanical system, damping means
taking energy out of the vibration in the form of heat, and exactly the same
idea applies to an electrical system: the resistor supplies the damping, and
therefore controls the width of the resonance. If we set out to eliminate all
resistance in the tuner circuit, by not building in a resistor and by somehow
getting rid of all the inherent electrical resistance of the wires, we would
silver
blue
brown
red
2 1 6 +10%
21×106 W +10%
Color codes for resistors
(left), and an example of
their use (top).
The symbol used in schematics
to represent a
resistor.
color meaning
black 0
brown 1
red 2
orange 3
yellow 4
green 5
blue 6
violet 7
gray 8
white 9
silver +10%
gold +5%
[Answer to question on the previous page.] The large amount of power means a high rate of conversion of the
battery’s chemical energy into heat. The battery will quickly use up all its energy, i.e. “burn out.”
Chapter 3 Circuits, Part 1
85
have a useless radio. The tuner’s resonance would be so narrow that we
could never get close enough to the right frequency to bring in the station.
The roles of inertia and stiffness are played by other circuit elements we
have not discusses (a capacitor and a coil).
Applications
Many electrical devices are based on electrical resistance and Ohm’s law,
even if they do not have little components in them that look like the usual
resistor. The following are some examples.
Lightbulb
There is nothing special about a lightbulb filament — you can easily
make a lightbulb by cutting a narrow waist into a metallic gum wrapper and
connecting the wrapper across the terminals of a 9-volt battery. The trouble
is that it will instantly burn out. Edison solved this technical challenge by
encasing the filament in an evacuated bulb, which prevented burning, since
burning requires oxygen.
Polygraph
The polygraph, or “lie detector,” is really just a set of meters for recording
physical measures of the subject’s psychological stress, such as sweating
and quickened heartbeat. The real-time sweat measurement works on the
principle that dry skin is a good insulator, but sweaty skin is a conductor.
Of course a truthful subject may become nervous simply because of the
situation, and a practiced liar may not even break a sweat. The method’s
practitioners claim that they can tell the difference, but you should think
twice before allowing yourself to be polygraph tested. Most U.S. courts
exclude all polygraph evidence, but some employers attempt to screen out
dishonest employees by polygraph testing job applicants, an abuse that
ranks with such pseudoscience as handwriting analysis.
Fuse
A fuse is a device inserted in a circuit tollbooth-style in the same
manner as an ammeter. It is simply a piece of wire made of metals having a
relatively low melting point. If too much current passes through the fuse, it
melts, opening the circuit. The purpose is to make sure that the building’s
wires do not carry so much current that they themselves will get hot enough
to start a fire. Most modern houses use circuit breakers instead of fuses,
although fuses are still common in cars and small devices. A circuit breaker
is a switch operated by a coiled-wire magnet, which opens the circuit when
enough current flows. The advantage is that once you turn off some of the
appliances that were sucking up too much current, you can immediately flip
the switch closed. In the days of fuses, one might get caught without a
replacement fuse, or even be tempted to stuff aluminum foil in as a replacement,
defeating the safety feature.
Section 3.4 Resistance
86
Voltmeter
A voltmeter is nothing more than an ammeter with an additional highvalue
resistor through which the current is also forced to flow. Ohm’s law
relates the current through the resistor is related directly to the voltage
difference across it, so the meter can be calibrated in units of volts based on
the known value of the resistor. The voltmeter’s two probes are touched to
the two locations in a circuit between which we wish to measure the voltage
difference, (b). Note how cumbersome this type of drawing is, and how
difficult it can be to tell what is connected to what. This is why electrical
drawing are usually shown in schematic form. Figure (c) is a schematic
representation of figure (b).
The setups for measuring current and voltage are different. When we
are measuring current, we are finding “how much stuff goes through,” so
we place the ammeter where all the current is forced to go through it.
Voltage, however, is not “stuff that goes through,” it is a measure of potential
energy. If an ammeter is like the meter that measures your water use, a
voltmeter is like a measuring stick that tells you how high a waterfall is, so
that you can determine how much energy will be released by each kilogram
of falling water. We do not want to force the water to go through the
measuring stick! The arrangement in figure (c) is a parallel circuit: one in
there are “forks in the road” where some of the current will flow one way
and some will flow the other. Figure (d) is said to be wired in series: all the
current will visit all the circuit elements one after the other. We will deal
with series and parallel circuits in more detail in the following chapter.
If you inserted a voltmeter incorrectly, in series with the bulb and
battery, its large internal resistance would cut the current down so low that
the bulb would go out. You would have severely disturbed the behavior of
the circuit by trying to measure something about it.
Incorrectly placing an ammeter in parallel is likely to be even more
disconcerting. The ammeter has nothing but wire inside it to provide
resistance, so given the choice, most of the current will flow through it
rather than through the bulb. So much current will flow through the
ammeter, in fact, that there is a danger of burning out the battery or the
meter or both! For this reason, most ammeters have fuses or circuit breakers
inside. Some models will trip their circuit breakers and make an audible
alarm in this situation, while others will simply blow a fuse and stop
working until you replace it.
Discussion Question
A. In figure (b), would it make any difference in the voltage measurement if we
touched the voltmeter’s probes to different points along the same segments of
wire?
B. Explain why it would be incorrect to define resistance as the amount of
charge the resistor allows to flow.
(a) A simplified diagram of
how a voltmeter works.
voltmeter
V
A
(b) Measuring the voltage difference
across a lightbulb.
(c) The same setup drawn
in schematic form.
(d) The setup for measuring
current is different.
Chapter 3 Circuits, Part 1
87
3.5 Current-Conducting Properties of Materials
Ohm’s law has a remarkable property, which is that current will flow
even in response to a voltage difference that is as small as we care to make it.
In the analogy of pushing a crate across a floor, it is as though even a flea
could slide the crate across the floor, albeit at some very low speed. The flea
cannot do this because of static friction, which we can think of as an effect
arising from the tendency of the microscopic bumps and valleys in the crate
and floor to lock together. The fact that Ohm’s law holds for nearly all
solids has an interesting interpretation: at least some of the electrons are not
“locked down” at all to any specific atom.
More generally we can ask how charge actually flows in various solids,
liquids, and gases. This will lead us to the explanations of many interesting
phenomena, including lightning, the bluish crust that builds up on the
terminals of car batteries, and the need for electrolytes in sports drinks.
Solids
In atomic terms, the defining characteristic of a solid is that its atoms
are packed together, and the nuclei cannot move very far from their equilibrium
positions. It makes sense, then, that electrons, not ions, would be the
charge carriers when currents flow in solids. This fact was established
experimentally by Tolman and Stewart, in an experiment in which they
spun a large coil of wire and then abruptly stopped it. They observed a
current in the wire immediately after the coil was stopped, which indicated
that charged particles that were not permanently locked to a specific atom
had continued to move because of their own inertia, even after the material
of the wire in general stopped. The direction of the current showed that it
was negatively charged particles that kept moving. The current only lasted
for an instant, however; as the negatively charged particles collected at the
downstream end of the wire further particles were prevented joining them
due to their electrical repulsion, as well as the attraction from the upstream
end, which was left with a net positive charge. Tolman and Stewart were
even able to determine the mass-to-charge ratio of the particles. We need
not go into the details of the analysis here, but a particles with high mass
would be difficult to decelerate, leading to a stronger and longer pulse of
current, while particles with high charge would feel stronger electrical forces
decelerating them, which would cause a weaker and shorter pulse. The
mass-to-charge ratio thus determined was consistent with the m/q of the
electron to within the accuracy of the experiment, which essentially established
that the particles were electrons.
The fact that only electrons carry current in solids, not ions, has many
important implications. For one thing, it explains why wires don’t fray or
turn to dust after carrying current for a long time. Electrons are very small
(perhaps even pointlike), and it is easy to imagine them passing between the
cracks among the atoms without creating holes or fractures in the atomic
framework. For those who know a little chemistry, it also explains why all
the best conductors are on the left side of the periodic table. The elements
in that area are the ones that have only a very loose hold on their outermost
electrons.
Section 3.5 Current-Conducting Properties of Materials
88
Gases
The molecules in a gas spend most of their time separated from each
other by significant distances, so it is not possible for them to conduct
electricity the way solids do, by handing off electrons from atom to atom. It
is therefore not surprising that gases are good insulators.
Gases are also usually nonohmic. As opposite charges build up on a
stormcloud and the ground below, the voltage difference becomes greater
and greater. Virtually zero current flows, however, until finally the voltage
reaches a certain threshold and we have an impressive example of what is
known as a spark or electrical discharge. If air was ohmic, the current
between the cloud and the ground would simply increase steadily as the
voltage difference increased, rather than being zero until a threshold was
reached. This behavior can be explained as follows. At some point, the
electrical forces on the air electrons and nuclei of the air molecules become
so strong that electrons are ripped right off of some of the molecules. The
electrons then accelerate toward either the cloud or the ground, whichever
is positively charged, and the positive ions accelerate the opposite way. As
these charge carriers accelerate, they strike and ionize other molecules,
which produces a rapidly growing cascade.
Liquids
Molecules in a liquid are able to slide past each other, so ions as well as
electrons can carry currents. Pure water is a poor conductor because the
water molecules tend to hold onto their electrons strongly, and there are
therefore not many electrons or ions available to move. Water can become
quite a good conductor, however, with the addition of even a small amount
of certain substances called electrolytes, which are typically salts. For
example, if we add table salt, NaCl, to water, the NaCl molecules dissolve
into Na+ and Cl– ions, which can then move and create currents. This is
why electric currents can flow among the cells in our bodies: cellular fluid is
quite salty. When we sweat, we lose not just water but electrolytes, so
dehydration plays havoc with our cells’ electrical systems. It is for this
reason that electrolytes are included in sports drinks and formulas for
rehydrating infants who have diarrhea.
Since current flow in liquids involves entire ions, it is not surprising
that we can see physical evidence when it has occurred. For example, after a
car battery has been in use for a while, the H2SO4 battery acid becomes
depleted of hydrogen ions, which are the main charge carriers that complete
the circuit on the inside of the battery. The leftover SO4 then forms a visible
blue crust on the battery posts.
Chapter 3 Circuits, Part 1
89
Speed of currents and electrical signals
When I talk on the phone to my mother in law two thousand miles
away, I do not notice any delay while the signal makes its way back and
forth. Electrical signals therefore must travel very quickly, but how fast
exactly? The answer is rather subtle. For the sake of concreteness, let’s
restrict ourselves to currents in metals, which consist of electrons.
The electrons themselves are only moving at speeds of perhaps a few
thousand miles per hour, and their motion is mostly random thermal
motion. This shows that the electrons in my phone cannot possibly be
zipping back and forth between California and New York fast enough to
carry the signals. Even if their thousand-mile-an-hour motion was organized
rather than random, it would still take them many minutes to get there.
Realistically, it will take the average electron even longer than that to make
the trip. The current in the wire consists only of a slow overall drift, at a
speed on the order of a few centimeters per second, superimposed on the
more rapid random motion. We can compare this with the slow westward
drift in the population of the U.S. If we could make a movie of the motion
of all the people in the U.S. from outer space, and could watch it at high
speed so that the people appeared to be scurrying around like ants, we
would think that the motion was fairly random, and we would not immediately
notice the westward drift. Only after many years would we realize that
the number of people heading west over the Sierras had exceeded the
number going east, so that California increased its share of the country’s
population.
So why are electrical signals so fast if the average drift speed of electrons
is so slow? The answer is that a disturbance in an electrical system can move
much more quickly than the charges themselves. It is as though we filled a
pipe with golf balls and then inserted an extra ball at one end, causing a ball
to fall out at the other end. The force propagated to the other end in a
fraction of a second, but the balls themselves only traveled a few centimeters
in that time.
Because the reality of current conduction is so complex, we often
describe things using mental shortcuts that are technically incorrect. This is
OK as long as we know that they are just shortcuts. For example, suppose
the presidents of France and Russia shake hands, and the French politician
has inadvertently picked up a positive electrical charge, which shocks the
Russian. We may say that the excess positively charged particles in the
French leader’s body, which all repel each other, take the handshake as an
opportunity to get farther apart by spreading out into two bodies rather
than one. In reality, it would be a matter of minutes before the ions in one
person’s body could actually drift deep into the other’s. What really happens
is that throughout the body of the recipient of the shock there are already
various positive and negative ions which are free to move. Even before the
perpetrator’s charged hand touches the victim’s sweaty palm, the charges in
the shocker’s body begin to repel the positive ions and attract the negative
ions in the other person. The split-second sensation of shock is caused by
the sudden jumping of the victim’s ions by distances of perhaps a micrometer,
this effect occurring simultaneously throughout the whole body,
although more violently in the hand and arm, which are closer to the other
person.
Section 3.5 Current-Conducting Properties of Materials
90
3.6ò Applications of Calculus
The definition of current as the rate of change of charge with respect to
time can clearly be reexpressed in terms of a derivative in the case where the
rate of change is not constant,
I =
dq
dt
.
This immediately allows us to use the bag of tricks from calculus.
Example
Question: A charged balloon falls to the ground, and its charge
begins leaking off to the Earth. Suppose that the charge on the
balloon is given by q=ae –bt. Find the current as a function of time,
and interpret the answer.
Solution: Taking the derivative, we have
I = d
dt
ae– bt
= –a b e– bt
The exponential function approaches zero as the exponent gets
more and more negative. This means that both the charge and
the current are decreasing in magnitude with time. It makes
sense that the charge approaches zero, since the balloon is
losing its charge. It also makes sense that the current is decreasing
in magnitude, since charge cannot flow at the same rate
forever without overshooting zero.
Example
Question: In the segment of the ATLAS accelerator shown in
section 3.4, suppose the current flowing back and forth between
the two cylinders is given by I=a cos bt. What is the charge on
one of the cylinders as a function of time?
Solution: We are given the current and want to find the charge,
i.e. we are given the derivative and we want to find the original
function that would give that derivative. This means we need to
integrate:
q = I dt
= a cos bt dt
= a
b
sin bt + q
o ,
where q
o is a constant of integration.
We can interpret this in order to explain why a superconductor
needs to be used. The constant b must be very large, since the
current is supposed to oscillate back and forth millions of times a
second. Looking at the final result, we see that if b is a very large
number, and q is to be a significant amount of charge, then a
must be a very large number as well. If a is numerically large,
then the current must be very large, so it would heat the accelerator
too much if it was flowing through an ordinary conductor.
Chapter 3 Circuits, Part 1
91
Summary
Selected Vocabulary
current …………………………….. the rate at which charge crosses a certain boundary
ampere …………………………….. the metric unit of current, one coulomb pe second; also “amp”
ammeter …………………………… a device for measuring electrical current
circuit ………………………………. an electrical device in which charge can come back to its starting point
and be recycled rather than getting stuck in a dead end
open circuit ………………………. a circuit that does not function because it has a gap in it
short circuit ………………………. a circuit that does not function because charge is given a low-resistance
“shortcut” path that it can follow, instead of the path that makes it do
something useful
voltage ……………………………… electrical potential energy per unit charge that will be possessed by a
charged particle at a certain point in space
volt ………………………………….. the metric unit of voltage, one joule per coulomb
voltmeter ………………………….. a device for measuring voltage differences
ohmic ………………………………. describes a substance in which the flow of current between two points
is proportional to the voltage difference between them
resistance ………………………….. the ratio of the voltage difference to the current in an object made of
an ohmic substance
ohm ………………………………… the metric unit of electrical resistance, one volt per ampere
Notation
I …………………………………. current
A ………………………………… units of amperes
V ………………………………… voltage
V ………………………………… units of volts
R ………………………………… resistance
W………………………………… units of ohms
Notation and Terminology Used in Other Books
electric potential ……………. rather than the more informal “voltage” used here; despite the misleading
name, it is not the same as electric potential energy
eV ………………………………. a unit of energy, equal to e multiplied by 1 volt; 1.6×10 –19 joules
Summary
All electrical phenomena are alike in that that arise from the presence or motion of charge. Most practical
electrical devices are based on the motion of charge around a complete circuit, so that the charge can be
recycled and does not hit any dead ends. The most useful measure of the flow of charge is current, I=Dq/Dt.
An electrical device whose job is to transform energy from one form into another, e.g. a lightbulb, uses
power at a rate which depends both on how rapidly charge is flowing through it and on how much work is
done on each unit of charge. The latter quantity is known as the voltage difference between the point where
the current enters the device and the point where the current leaves it. Since there is a type of potential
energy associated with electrical forces, the amount of work they do is equal to the difference in potential
energy between the two points, and we therefore define voltage differences directly in terms of potential
energy, DV=DPEelec/q. The rate of power dissipation is P=IDV.
Many important electrical phenomena can only be explained if we understand the mechanisms of current
flow at the atomic level. In metals, currents are carried by electrons, in liquids by ions. Gases are normally
poor conductors unless their atoms are subjected to such intense electrical forces that the atoms become
ionized.
Many substances, including all solids, respond to electrical forces in such a way that the flow of current
between two points is proportional to the voltage difference between those points. Such a substance is called
ohmic, and an object made out of an ohmic substance can be rated in terms of its resistance, R=DV/I. An
important corollary is that a perfect conductor, with R=0, must have constant voltage everywhere within it.
Section Summary
92
Homework Problems
1. A resistor has a voltage difference DV across it, causing a current I to
flow. (a) Find an equation for the power it dissipates as heat in terms of
the variables I and R only, eliminating DV. (b) If an electrical line coming
to your house is to carry a given amount of current, interpret your equation
from part a to explain whether the wire’s resistance should be small or
large.
2. (a) Express the power dissipated by a resistor in terms of R and DV only,
eliminating I. (b 3) Electrical receptacles in your home are mostly 110 V,
but circuits for electric stoves, air conditioners, and washers and driers are
usually 220 V. The two types of circuits have differently shaped receptacles.
Suppose you rewire the plug of a drier so that it can be plugged in
to a 110 V receptacle. The resistor that forms the heating element of the
drier would normally draw 200 W. How much power does it actually
draw now?
3. As discussed in the text, when a conductor reaches an equilibrium
where its charge is at rest, there is always zero electric force on a charge in
its interior, and any excess charge concentrates itself on the surface. The
surface layer of charge arranges itself so as to produce zero total force at
any point in the interior. (Otherwise the free charge in the interior could
not be at rest.) Suppose you have a teardrop-shaped conductor like the
one shown in the figure. Since the teardrop is a conductor, there are free
charges everywhere inside it, but consider a free charged particle at the
location shown with a white circle. Explain why, in order to produce zero
force on this particle, the surface layer of charge must be denser in the
pointed part of the teardrop. (Similar reasoning shows why lightning rods
are made with points. The charged stormclouds induce positive and
negative charges to move to opposite ends of the rod. At the pointed
upper end of the rod, the charge tends to concentrate at the point, and
this charge attracts the lightning.)
4. Use the result of problem 3 in ch. 1 to find an equation for the voltage
at a point in space at a distance r from a point charge Q. (Take your V=0
distance to be anywhere you like.)
5«3. Referring back to the homework problem in chapter 1 about the
sodium chloride crystal, suppose the lithium ion is going to jump from
the gap it is occupying to one of the four closest neighboring gaps. Which
one will it jump to, and if it starts from rest, how fast will it be going by
the time it gets there? (It will keep on moving and accelerating after that,
but that does not concern us.) [Hint: The approach is similar to the one
used for the other problem, but you want to work with voltage and
potential energy rather than force.]
S A solution is given in the back of the book. « A difficult problem.
3 A computerized answer check is available. ò A problem that requires calculus.
Problem 3.
– + – + – +
– + – + – +
– + – + – +
– + + – +
– + – + – +
– + – + – +
Problem 5.
+
+
+ +
+
+
+
+
+ +
+
+ +
+
Chapter 3 Circuits, Part 1
93
6 3. Referring back to our old friend the neuron from the homework
problem in chapter 1, let’s now consider what happens when the nerve is
stimulated to transmit information. When the blob at the top (the cell
body) is stimulated, it causes Na+ ions to rush into the top of the tail
(axon). This electrical pulse will then travel down the axon, like a flame
burning down from the end of a fuse, with the Na+ ions at each point first
going out and then coming back in. If 1010 Na+ ions cross the cell membrane
in 0.5 ms, what amount of current is created?
7 3. If a typical light bulb draws about 900 mA from a 110-V household
circuit, what is its resistance? (Don’t worry about the fact that it’s alternating
current.)
83. Today, even a big luxury car like a Cadillac can have an electrical
system that is relatively low in power, since it doesn’t need to do much
more than run headlights, power windows, etc. In the near future, however,
manufacturers plan to start making cars with electrical systems about
five times more powerful. This will allow certain energy-wasting parts like
the water pump to be run on electrical motors and turned off when
they’re not needed — currently they’re run directly on shafts from the
motor, so they can’t be shut off. It may even be possible to make an engine
that can shut off at a stoplight and then turn back on again without
cranking, since the valves can be electrically powered. Current cars’
electrical systems have 12-volt batteries (with 14-volt chargers), but the
new systems will have 36-volt batteries (with 42-volt chargers). (a) Suppose
the battery in a new car is used to run a device that requires the same
amount of power as the corresponding device in the old car. Based on the
sample figures above, how would the currents handled by the wires in one
of the new cars compare with the currents in the old ones? (b) The real
purpose of the greater voltage is to handle devices that need more power.
Can you guess why they decided to change to 36-volt batteries rather than
increasing the power without increasing the voltage?
9«. (a3) You take an LP record out of its sleeve, and it acquires a static
charge of 1 nC. You play it at the normal speed of 331/3 r.p.m., and the
charge moving in a circle creates an electric current. What is the current,
in amperes?
(b3) Although the planetary model of the atom can be made to work with
any value for the radius of the electrons’ orbits, more advanced models
that we will study later in this course predict definite radii. If the electron
is imagined as circling around the proton at a speed of 2.2×106 m/s, in an
orbit with a radius of 0.05 nm, what electric current is created?
10. We have referred to resistors dissipating heat, i.e. we have assumed that
P=IDV is always greater than zero. Could IDV come out to be negative for
a resistor? If so, could one make a refrigerator by hooking up a resistor in
such a way that it absorbed heat instead of dissipating it?
———
———
+++++++++
+++++++++
(a)
(b)
Problem 6.
Section Homework Problems
94
11. You are given a battery, a flashlight bulb, and a single piece of wire.
Draw at least two configurations of these items that would result in
lighting up the bulb, and at least two that would not light it. (Don’t draw
schematics.) If you’re not sure what’s going on, borrow the materials from
your instructor and try it. Note that the bulb has two electrical contacts:
one is the threaded metal jacket, and the other is the tip. [Problem by
Arnold Arons.]
12 S. In a wire carrying a current of 1.0 pA, how long do you have to
wait, on the average, for the next electron to pass a given point? Express
your answer in units of microseconds.
13 S. The figure shows a simplified diagram of an electron gun such as the
one used in the Thomson experiment, or the one that creates the electron
beam in a TV tube. Electrons that spontaneously emerge from the negative
electrode (cathode) are then accelerated to the positive electrode,
which has a hole in it. (Once they emerge through the hole, they will slow
down. However, if the two electrodes are fairly close together, this slowing
down is a small effect, because the attractive and repulsive forces experienced
by the electron tend to cancel.) (a) If the voltage difference between
the electrodes is DV, what is the velocity of an electron as it emerges at B?
(Assume its initial velocity, at A, is negiligible.) (b) Evaluate your expression
numerically for the case where DV=10 kV, and compare to the speed
of light.
14. The figure shows a simplified diagram of a device called a tandem
accelerator, used for accelerating beams of ions up to speeds on the order
of 1% of the speed of light. The nuclei of these ions collide with the nuclei
of atoms in a target, producing nuclear reactions for experiments studying
the structure of nuclei. The outer shell of the accelerator is a conductor at
zero voltage (i.e. the same voltage as the Earth). The electrode at the
center, known as the “terminal,” is at a high positive voltage, perhaps
millions of volts. Negative ions with a charge of –1 unit (i.e. atoms with
one extra electron) are produced offstage on the right, typically by chemical
reactions with cesium, which is a chemical element that has a strong
tendency to give away electrons. Relatively weak electric and magnetic
forces are used to transport these –1 ions into the accelerator, where they
are attracted to the terminal. Although the center of the terminal has a
hole in it to let the ions pass through, there is a very thin carbon foil there
that they must physically penetrate. Passing through the foil strips off
some number of electrons, changing the atom into a positive ion, with a
charge of +n times the fundamental charge. Now that the atom is positive,
it is repelled by the terminal, and accelerates some more on its way out of
the accelerator. (a) Find the velocity, v, of the emerging beam of positive
ions, in terms of n, their mass m, the terminal voltage V, and fundamental
constants. Neglect the small change in mass caused by the loss of electrons
in the stripper foil. (b) To fuse protons with protons, a minimum beam
velocity of about 11% of the speed of light is required. What terminal
voltage would be needed in this case?
negative
ions
positive
ions
Problem 14.
– +
A B
Problem 13.
Chapter 3 Circuits, Part 1
Problem 11.
95
4 Circuits, Part 2
In the previous chapter we limited ourselves to relatively simple circuits,
essentially nothing more than a battery and a single lightbulb. The purpose
of this chapter is to introduce you to more complex circuits, containing
multiple resistors or voltage sources in series, in parallel, or both.
Why do you need to know this stuff? After all, if you were planning on
being an electrical engineer you probably wouldn’t be learning physics from
this book. Consider, however, that every time you plug in a lamp or a radio
you are adding a circuit element to a household circuit and making it more
complex. Electrical safety, as well, cannot really be understood without
understanding multiple-element circuits, since getting shocked usually
involves at least two parts: the device that is supposed to use power plus the
body of the person in danger. If you are a student majoring in the life
sciences, you should realize as well that all cells are inherently electrical, and
in any multicellular organism there will therefore be various series and
parallel circuits.
Even apart from these practical purposes, there is a very fundamental
reason for reading this chapter: to understand the previous chapter better.
At this point in their studies, I always observe students using words and
modes of reasoning that show they have not yet become completely comfortable
and fluent with the concepts of voltage and current. They ask,
“aren’t voltage and current sort of the same idea?” They speak of voltage
“going through” a lightbulb. Once they begin honing their skills on more
complicated circuits I always see their confidence and understanding
increase immeasurably.
96
4.1 Schematics
I see a chess position; Kasparov sees an interesting Ruy Lopez variation.
To the uninitiated a schematic may look as unintelligible as Mayan
hieroglyphs, but even a little bit of eye training can go a long way toward
making its meaning leap off the page. A schematic is a stylized and simplified
drawing of a circuit. The purpose is to eliminate as many irrelevant
features as possible, so that the relevant ones are easier to pick out.
An example of an irrelevant feature is the physical shape, length, and
diameter of a wire. In nearly all circuits, it is a good approximation to
assume that the wires are perfect conductors, so that any piece of wire
uninterrupted by other components has constant voltage throughout it.
Changing the length of the wire, for instance, does not change this fact. (Of
course if we used miles and miles of wire, as in a telephone line, the wire’s
resistance would start to add up, and its length would start to matter.) The
shapes of the wires are likewise irrelevant, so we draw them with standardized,
stylized shapes made only of vertical and horizontal lines with rightangle
bends in them. This has the effect of making similar circuits look
more alike and helping us to recognize familiar patterns, just as words in a
newspaper are easier to recognize than handwritten ones. Figures a-d show
some examples of these concepts.
V V V
V
(a) wrong:
Shapes of
wires are
irrelevant.
(b) wrong:
Should
use right
angles.
(c) wrong:
Makes a simple
pattern look
unfamliar.
(d) right
The most important first step in learning to read schematics is to learn
to recognize contiguous pieces of wire which must have constant voltage
throughout. In figure (e), for example, the two shaded E-shaped pieces of
wire must each have constant voltage. This focuses our attention on two of
the main unknowns we’d like to be able to predict: the voltage of the lefthand
E and the voltage of the one on the right.
(e)
Chapter 4 Circuits, Part 2
97
4.2 Parallel Resistances and the Junction Rule
One of the simplest examples to analyze is the parallel resistance circuit,
of which figure (e) was an example. In general we may have unequal
resistances R1 and R2, as in (f ). Since there are only two constant-voltage
areas in the circuit, (g), all three components have the same voltage difference
across them. A battery normally succeeds in maintaining the voltage
differences across itself for which it was designed, so the voltage drops DV1
and DV2 across the resistors must both equal the voltage of the battery:
DV1 = DV2 = DVbattery .
Each resistance thus feels the same voltage difference as if it was the only
one in the circuit, and Ohm’s law tells us that the amount of current
flowing through each one is also the same as it would have been in a oneresistor
circuit. This is why household electrical circuits are wired in parallel.
We want every appliance to work the same, regardless of whether other
appliances are plugged in or unplugged, turned on or switched off. (The
electric company doesn’t use batteries of course, but our analysis would be
the same for any device that maintains a constant voltage.)
Of course the electric company can tell when we turn on every light in
the house. How do they know? The answer is that we draw more current.
Each resistance draws a certain amount of current, and the amount that has
to be supplied is the sum of the two individual currents. The current is like
a river that splits in half, (h), and then reunites. The total current is
Itotal = I1 + I2 .
This is an example of a general fact called the junction rule:
the junction rule
In any circuit that is not storing or releasing charge,
conservation of charge implies that the total current flowing out
of any junction must be the same as the total flowing in.
Coming back to the analysis of our circuit, we apply Ohm’s law to each
resistance, resulting in
Itotal = DV/R1 + DV/R2
= DV   1
R1
+ 1
R2
.
As far as the electric company is concerned, your whole house is just one
resistor with some resistance R, called the equivalent resistance. They would
write Ohm’s law as
Itotal = DV/R ,
from which we can determine the equivalent resistance by comparison with
the previous expression:
1R
= 1
R1
+ 1
R2
R1
R2
(f)
(g)
(h)
(i)
R1
R2
Section 4.2 Parallel Resistances and the Junction Rule
98
R =
1
R1
+ 1
R2
– 1
[equivalent resistance of two resistors in parallel]
Two resistors in parallel, (i), are equivalent to a single resistor with a value
given by the above equation.
Example: two lamps on the same household circuit
Question: You turn on two lamps that are on the same household
circuit. Each one has a resistance of 1 ohm. What is the
equivalent resistance, and how does the power dissipation
compare with the case of a single lamp?
Solution: The equivalent resistance of the two lamps in parallel
is
R = 1R
1
+ 1R
2
– 1
= 1
1 W + 1
1 W
– 1
= (1 W –1 + 1 W –1)–1
= (2 W –1) –1
= 0.5 W
The voltage difference across the whole circuit is always the 110
V set by the electric company (it’s alternating current, but that’s
irrelevant). The resistance of the whole circuit has been cut in
half by turning on the second lamp, so a fixed amount of voltage
will produce twice as much current. Twice the current flowing
across the same voltage difference means twice as much power
dissipation, which makes sense.
The cutting in half of the resistance surprises many students, since we
are “adding more resistance” to the circuit by putting in the second lamp.
Why does the equivalent resistance come out to be less than the resistance
of a single lamp? This is a case where purely verbal reasoning can be misleading.
A resistive circuit element, such as the filament of a lightbulb, is
neither a perfect insulator nor a perfect conductor. Instead of analyzing this
type of circuit in terms of “resistors,” i.e. partial insulators, we could have
spoken of “conductors.” This example would then seem reasonable, since
we “added more conductance,” but one would then have the incorrect
expectation about the case of resistors in series, discussed in the following
section.
Perhaps a more productive way of thinking about it is to use mechanical
intuition. By analogy, your nostrils resist the flow of air through them, but
having two nostrils makes it twice as easy to breathe.
Chapter 4 Circuits, Part 2
99
Uniting four resistors in parallel is
equivalent to making a single resistor
with the same length but four times the
cross-sectional area. The result is to
make a resistor with one quarter the
resistance.
Example: three resistors in parallel
Question: What happens if we have three or more resistors in
parallel?
Solution: This is an important example, because the solution
involves an important technique for understanding circuits:
breaking them down into smaller parts and them simplifying
those parts. In the circuit (a), with three resistors in parallel, we
can think of two of the resistors as forming a single big resistor,
(b), with equivalent resistance
R1 and 2 = 1R
1
+ 1R
2
– 1
.
We can then simplify the circuit as shown in (c), so that it contains
only two resistances. The equivalent resistance of the
whole circuit is then given by
R1, 2 and 3 = 1
R1 and 2
+ 1R
3
– 1
.
Substituting for R1 and 2 and simplifying, we find the result
R1, 2 and 3 =
1R
1
+ 1R
2
+ 1R
3
– 1
,
which you probably could have guessed. The interesting point
here is the divide-and-conquer concept, not the mathematical
result.
Example: an arbitrary number of identical resistors in parallel
Question: What is the resistance of N identical resistors in
parallel?
Solution: Generalizing the results for two and three resistors, we
have
RN = 1R1
+ 1R
2
+ …
– 1
,
where “…” means that the sum includes all the resistors. If all the
resistors are identical, this becomes
RN = N
R
– 1
= R
N
Example: dependence of resistance on cross-sectional area
We have alluded briefly to the fact that an object’s electrical
resistance depends on its size and shape, but now we are ready
to begin making more mathematical statements about it. As
suggested by the figure, increasing a resistors’s cross-sectional
area is equivalent to adding more resistors in parallel, which will
lead to an overall decrease in resistance. Any real resistor with
straight, parallel sides can be sliced up into a large number of
pieces, each with cross-sectional area of, say, 1 mm2. The
number, N, of such slices is proportional to the total crosssectional
area of the resistor, and by application of the result of
the previous example we therefore find that the resistance of an
object is inversely proportional to its cross-sectional area.
An analogous relationship holds for water pipes, which is
why high-flow trunk lines have to have large cross-sectional
areas. To make lots of water (current) flow through a skinny pipe,
we’d need an impractically large pressure (voltage) difference.
(a)
R1
R2
R3
(b)
R1
R2
R3
(c)
R1 and 2
R3
Section 4.2 Parallel Resistances and the Junction Rule
100
Example: incorrect readings from a voltmeter
A voltmeter is really just an ammeter with an internal resistor,
and we use a voltmeter in parallel with the thing that we’re trying
to measure the voltage difference across. This means that any
time we measure the voltage drop across a resistor, we’re
essentially putting two resistors in parallel. The ammeter inside
the voltmeter can be ignored for the purpose of analyzing what
how current flows in the circuit, since it is essentially just some
coiled-up wire with a very low resistance.
Now if we are carrying out this measurement on a resistor
that is part of a larger circuit, we have changed the behavior of
the circuit through our act of measuring. It is as though we had
modified the circuit by replacing the resistance R with the smaller
equivalent resistance of R and R
v in parallel. It is for this reason
that voltmeters are built with the largest possible internal resistance.
As a numerical example, if we use a voltmeter with an
internal resistance of 1 MW to measure the voltage drop across a
one-ohm resistor, the equivalent resistance is 0.999999 W, which
is not different enough to matter. But if we tried to use the same
voltmeter to measure the voltage drop across a 2-MW resistor,
we would be reducing the resistance of that part of the circuit by
a factor of three, which would produce a drastic change in the
behavior of the whole circuit.
This is the reason why you can’t use a voltmeter to measure
the voltage difference between two different points in mid-air, or
between the ends of a piece of wood. This is by no means a
stupid thing to want to do, since the world around us is not a
constant-voltage environment, the most extreme example being
when an electrical storm is brewing. But it will not work with an
ordinary voltmeter because the resistance of the air or the wood
is many gigaohms. The effect of waving a pair of voltmeter
probes around in the air is that we provide a reuniting path for
the positive and negative charges that have been separated —
through the voltmeter itself, which is a good conductor compared
to the air. This reduces to zero the voltage difference we were
trying to measure.
In general, a voltmeter that has been set up with an open
circuit (or a very large resistance) between its probes is said to
be “floating.” An old-fashioned analog voltmeter of the type
described here will read zero when left floating, the same as
when it was sitting on the shelf. A floating digital voltmeter usually
shows an error message.
Rv
R
A
(a)
(b)
A voltmeter is really an ammeter with
an internal resistor. When we measure
the voltage difference across a resistor,
(a), we are really constructing a
parallel resistance circuit, (b).
Chapter 4 Circuits, Part 2
101
4.3 Series Resistances
The two basic circuit layouts are parallel and series, so a pair of resistors
in series, (a), is another of the most basic circuits we can make. By conservation
of charge, all the current that flows through one resistor must also flow
through the other (as well as through the battery):
I1 = I2 .
The only way the information about the two resistance values is going
to be useful is if we can apply Ohm’s law, which will relate the resistance of
each resistor to the current flowing through it and the voltage difference
across it. Figure (b) shows the three constant-voltage areas. Voltage differences
are more physically significant than voltages, so we define symbols for
the voltage differences across the two resistors in figure (c).
We have three constant-voltage areas, with symbols for the difference in
voltage between every possible pair of them. These three voltage differences
must be related to each other. It is as though I tell you that Fred is a foot
taller than Ginger, Ginger is a foot taller than Sally, and Fred is two feet
taller than Sally. The information is redundant, and you really only needed
two of the three pieces of data to infer the third. In the case of our voltage
differences, we have
DV  1 + DV2 = DVbattery .
The absolute value signs are because of the ambiguity in how we define our
voltage differences. If we reversed the two probes of the voltmeter, we would
get a result with the opposite sign. Digital voltmeters will actually provide a
minus sign on the screen if the wire connected to the “V” plug is lower in
voltage than the one connected to the “COM” plug. Analog voltmeters pin
the needle against a peg if you try to use them to measure negative voltages,
so you have to fiddle to get the leads connected the right way, and then
supply any necessary minus sign yourself.
Figure (d) shows a standard way of taking care of the ambiguity in
signs. For each of the three voltage measurements around the loop, we keep
the same probe (the darker one) on the clockwise side. It is as though the
voltmeter was sidling around the circuit like a crab, without ever “crossing
its legs.” With this convention, the relationship among the voltage drops
becomes
DV 1  + DV2 = –DVbattery ,
or, in more symmetrical form,
DV 1  + DV2 + DVbattery= 0
More generally, this is known as the loop rule for analyzing circuits:
the loop rule
Assuming the standard convention for plus and minus signs, the
sum of the voltage drops around any closed loop in a circuit
must be zero.
R1 R2
DVbattery
(a)
R1 R2
DVbattery
(b)
DVbattery
(c)
DV1 DV2
(d)
Section 4.3 Series Resistances
102
Looking for an exception to the loop rule would be like asking for a hike
that would be downhill all the way and that would come back to its starting
point!
For the circuit we set out to analyze, the equation
DV 1  + DV2 + DVbattery= 0
can now be rewritten by applying Ohm’s law to each resistor:
I 1R  1 + I 2R2 + DVbattery= 0 .
The currents are the same, so we can factor them out:
I R  1 + R2 + DVbattery= 0 ,
and this is the same result we would have gotten if we had been analyzing a
one-resistor circuit with resistance R1+R2. Thus the equivalent resistance of
resistors in series equals the sum of their resistances.
Example: two lightbulbs in series
Question: If two identical lightbulbs are placed in series, how do
their brightnesses compare with the brightness of a single bulb?
Solution: Taken as a whole, the pair of bulbs act like a doubled
resistance, so they will draw half as much current from the wall.
Each bulb will be dimmer than a single bulb would have been.
The total power dissipated by the circuit is IDV. The voltage
drop across the whole circuit is the same as before, but the
current is halved, so the two-bulb circuit draws half as much total
power as the one-bulb circuit. Each bulb draws one-quarter of
the normal power.
Roughly speaking, we might expect this to result in one
quarter the light being produced by each bulb, but in reality
lightbulbs waste quite a high percentage of their power in the
form of heat and wavelengths of light that are not visible (infrared
and ultraviolet). Less light will be produced, but it’s hard to
predict exactly how much less, since the efficiency of the bulbs
will be changed by operating them under different conditions.
Example: more than two equal resistances in series
By straightforward application of the divide-and-conquer technique
discussed in the previous section, we find that the equivalent
resistance of N identical resistances R in series will beNR.
Example: dependence of resistance on length
In the previous section, we proved that resistance is inversely
proportional to cross-sectional area. By equivalent reason about
resistances in series, we find that resistance is proportional to
length. Analogously, it is harder to blow through a long straw than
through a short one.
Putting the two arguments together, we find that the resistance
of an object with straight, parallel sides is given by
R = (constant) . L/A
The proportionality constant is called the resistivity, and it depends
only on the substance of which the object is made. A
resistivity measurement could be used, for instance, to help
identify a sample of an unknown substance.
Doubling the length of a resistor is
like putting two resistors in series.
The resistance is doubled.
Chapter 4 Circuits, Part 2
103
Example: choice of high voltage for power lines
Thomas Edison got involved in a famous technological
controversy over the voltage difference that should be used for
electrical power lines. At this time, the public was unfamiliar with
electricity, and easily scared by it. The president of the United
States, for instance, refused to have electrical lighting in the
White House when it first became commercially available because
he considered it unsafe, preferring the known fire hazard
of oil lamps to the mysterious dangers of electricity. Mainly as a
way to overcome public fear, Edison believed that power should
be transmitted using small voltages, and he publicized his
opinion by giving demonstrations at which a dog was lured into
position to be killed by a large voltage difference between two
sheets of metal on the ground. (Edison’s opponents also advocated
alternating current rather than direct current, and AC is
more dangerous than DC as well. As we will discuss later, AC
can be easily stepped up and down to the desired voltage level
using a device called a transformer.)
Now if we want to deliver a certain amount of power P
L to a
load such as an electric lightbulb, we are constrained only by the
equation P
L=ID V
L. We can deliver any amount of power we wish,
even with a low voltage, if we are willing to use large currents.
Modern electrical distribution networks, however, use dangerously
high voltage differences of tens of thousands of volts. Why
did Edison lose the debate?
It boils down to money. The electric company must deliver
the amount of power P
L desired by the customer through a
transmission line whose resistance R
T is fixed by economics and
geography. The same current flows through both the load and
the transmission line, dissipating power usefully in the former
and wastefully in the latter. The efficiency of the system is
efficiency = po wer paid for by the customer
power paid for by the utility
= PL
PL + PT
= 1
1 +PT /PL
Putting ourselves in the shoes of the electric company, we wish
to get rid of the variable P
T, since it is something we control only
indirectly by our choice of D V
T and I. Substituting P
T=ID V
T, we find
efficiency =   1
1 +
IDVT
PL
We assume the transmission line (but not necessarily the load) is
ohmic, so substituting DV T  =IRT gives
efficiency = 1
1 +
I 2RT
PL
This quantity can clearly be maximized by making I as small as
possible, since we will then be dividing by the smallest possible
quantity on the bottom of the fraction. A low-current circuit can
only deliver significant amounts of power if it uses high voltages,
which is why electrical transmission systems use dangerous high
voltages.
Section 4.3 Series Resistances
104
Example: getting killed by your ammeter
As with a voltmeter, an ammeter can give erroneous readings
if it is used in such a way that it changes the behavior the
circuit. An ammeter is used in series, so if it is used to measure
the current through a resistor, the resistor’s value will effectively
be changed to R+ R
a, where R
a is the resistance of the ammeter.
Ammeters are designed with very low resistances in order to
make it unlikely that R+ R
a will be significantly different from R.
In fact, the real hazard is death, not a wrong reading! Virtually
the only circuits whose resistances are significantly less than
that of an ammeter are those designed to carry huge currents.
An ammeter inserted in such a circuit can easily melt. When I
was working at a laboratory funded by the Department of Energy,
we got periodic bulletins from the DOE safety office about
serious accidents at other sites, and they held a certain ghoulish
fascination. One of these was about a DOE worker who was
completely incinerated by the explosion created when he inserted
an ordinary Radio Shack ammeter into a high-current
circuit. Later estimates showed that the heat was probably so
intense that the explosion was a ball of plasma — a gas so hot
that its atoms have been ionized.
Discussion Question
We have stated the loop rule in a symmetric form where a series of voltage
drops adds up to zero. To do this, we had to define a standard way of connecting
the voltmeter to the circuit so that the plus and minus signs would come out
right. Suppose we wish to restate the junction rule in a similar symmetric way,
so that instead of equating the current coming in to the current going out, it
simply states that a certain sum of currents at a junction adds up to zero. What
standard way of inserting the ammeter would we have to use to make this
work?
Chapter 4 Circuits, Part 2
105
Summary
Notation and Terminolog Used in Other Books
eV ………………………………. a unit of energy, equal to e multiplied by 1 volt; 1.6×10 –19 joules
Summary
A schematic is a drawing of a circuit that standardizes and stylizes its features to make it easier to understand.
Any circuit can be broken down into smaller parts. For instance, one big circuit may be understood as
two small circuits in series, another as three circuits in parallel. When circuit elements are combined in parallel
and in series, we have two basic rules to guide us in understanding how the parts function as a whole:
the junction rule: In any circuit that is not storing or releasing charge, conservation of charge implies
that the total current flowing out of any junction must be the same as the total flowing in.
the loop rule: Assuming the standard convention for plus and minus signs, the sum of the voltage drops
around any closed loop in a circuit must be zero.
The simplest application of these rules is to pairs of resistors combined in series or parallel. In such cases,
the pair of resistors acts just like a single unit with a certain resistance value, called their equivalent resistance.
Resistances in series add to produce a larger equivalent resistance,
Rse ries = R1 + R2 ,
because the current has to fight its way through both resistances. Parallel resistors combine to produce an
equivalent resistance that is smaller than either individual resistance,
Rparallel = 1R
1
+ 1R
2
– 1
,
because the current has two different paths open to it.
An important example of resistances in parallel and series is the use of voltmeters and ammeters in
resistive circuits. A voltmeter acts as a large resistance in parallel with the resistor across which the voltage
drop is being measured. The fact that its resistance is not infinite means that it alters the circuit it is being used
to investigate, producing a lower equivalent resistance. An ammeter acts as a small resistance in series with
the circuit through which the current is to be determined. Its resistance is not quite zero, which leads to an
increase in the resistance of the circuit being tested.
Summary
106
Homework Problems
1. (a) Many battery-operated devices take more than one battery. If you
look closely in the battery compartment, you will see that the batteries are
wired in series. Consider a flashlight circuit. What does the loop rule tell
you about the effect of putting several batteries in series in this way? (b)
The cells of an electric eel’s nervous system are not that different from ours
— each cell can develop a voltage difference across it of somewhere on the
order of one volt. How, then, do you think an electric eel can create
voltages of thousands of volts between different parts of its body?
2. The heating element of an electric stove is connected in series with a
switch that opens and closes many times per second. When you turn the
knob up for more power, the fraction of the time that the switch is closed
increases. Suppose someone suggests a simpler alternative for controlling
the power by putting the heating element in series with a variable resistor
controlled by the knob. (With the knob turned all the way clockwise, the
variable resistor’s resistance is nearly zero, and when it’s all the way counterclockwise,
its resistance is essentially infinite.) Why would the simpler
design be undesirable?
3. A one-ohm toaster and a two-ohm lamp are connected in parallel with
the 110-V supply of your house. (Ignore the fact that the voltage is AC
rather than DC.) (a) Draw a schematic of the circuit. (b3). For each of
the three components in the circuit, find the current passing through it
and the voltage drop across it. (c3) Suppose they were instead hooked up
in series. Draw a schematic and calculate the same things.
4. Wire is sold in a series of standard diameters, called “gauges.” The
difference in diameter between one gauge and the next in the series is
about 20%. How would the resistance of a given length of wire compare
with the resistance of the same length of wire in the next gauge in the
series?
5. The figure shows two possible ways of wiring a flashlight with a switch.
Both will serve to turn the bulb on and off, although the switch functions
in the opposite sense. Why is the method shown in (a) preferable?
6. In the figure, the battery is 9 V. (a) What are the voltage differences
across each light bulb? (b) What current flows through each of the three
components of the circuit? (c) If a new wire is added to connect points A
and B, how will the appearances of the bulbs change? What will be the
new voltages and currents? (d) Suppose no wire is connected from A to B,
but the two bulbs are switched. How will the results compare with the
results from the original setup as drawn?
A
B
5 W 10 W
S A solution is given in the back of the book. « A difficult problem.
3 A computerized answer check is available. ò A problem that requires calculus.
Problem 6.
(a) (b)
Problem 5.
Chapter 4 Circuits, Part 2
107
7. You have a circuit consisting of two unknown resistors in series, and a
second circuit consisting of two unknown resistors in parallel. (a) What, if
anything, would you learn about the resistors in the series circuit by
finding that the currents through them were equal? (b) What if you found
out the voltage differences across the resistors in the series circuit were
equal? (c) What would you learn about the resistors in the parallel circuit
from knowing that the currents were equal? (d) What if the voltages in
the parallel circuit were equal?
8. A student in a biology lab is given the following instructions: “Connect
the cerebral eraser (C.E.) and the neural depolarizer (N.D.) in parallel
with the power supply (P.S.). (Under no circumstances should you ever
allow the cerebral eraser to come within 20 cm of your head.) Connect a
voltmeter to measure the voltage across the cerebral eraser, and also insert
an ammeter in the circuit so that you can make sure you don’t put more
than 100 mA through the neural depolarizer.” The diagrams show two lab
groups’ attempts to follow the instructions. (a) Translate diagram (a) into
a standard-style schematic. What is incorrect and incorrect about this
group’s setup? (b) Do the same for diagram (b).
9. How many different resistance values can be created by combining
three unequal resistors? (Don’t count possibilities where not all the resistors
are used.)
10 ò. A person in a rural area who has no electricity runs an extremely long
extension cord to a friend’s house down the road so she can run an electric
light. The cord is so long that its resistance, x, is not negligible. Show that
the lamp’s brightness is greatest if its resistance, y, is equal to x. Explain
physically why the lamp is dim for values of y that are too small or too
large.
11 S. What resistance values can be created by combining a 1 kW resistor
and a 10 kW resistor?
12 S«. Suppose six identical resistors, each with resistance R, are connected
so that they form the edges of a tetrahedron (a pyramid with three
sides in addition to the base, i.e. one less side than an Egyptian pyramid).
What resistance value or values can be obtained by making connections
onto any two points on this arrangement?
C.E.
N.D.
A P.S.
V
C.E.
N.D.
P.S.
A
V
(a)
(b)
Problem 8.
Homework Problems
108
109
“Okay. Your duties are as follows: Get Breen. I don’t care
how you get him, but get him soon. That faker! He posed for
twenty years as a scientist without ever being apprehended.
Well, I’m going to do some apprehending that’ll make all
previous apprehending look like no apprehension at all. You
with me?”
“Yes,” said Battle, very much confused. “What’s that thing
you have?”
“Piggy-back heat-ray. You transpose the air in its path into
an unstable isotope which tends to carry all energy as heat.
Then you shoot your juice light, or whatever along the isotopic
path and you burn whatever’s on the receiving end. You
want a few?”
“No,” said Battle. “I have my gats. What else have you got
for offense and defense?”
Underbottam opened a cabinet and proudly waved an arm.
“Everything,” he said. “Disintegraters, heat-rays, bombs of
every type. And impenetrable shields of energy, massive and
portable. What more do I need?”
From THE REVERSIBLE REVOLUTIONS by Cecil Corwin, Cosmic
Stories, March 1941. Art by Morey, Bok, Kyle, Hunt, Forte. Copyright
expired.
5 Fields of Force
Cutting-edge science readily infiltrates popular culture, though sometimes
in garbled form. The Newtonian imagination populated the universe
mostly with that nice solid stuff called matter, which was made of little hard
balls called atoms. In the early twentieth century, consumers of pulp fiction
and popularized science began to hear of a new image of the universe, full
of x-rays, N-rays, and Hertzian waves. What they were beginning to soak
up through their skins was a drastic revision of Newton’s concept of a
universe made of chunks of matter which happened to interact via forces. In
the newly emerging picture, the universe was made of force, or, to be more
technically accurate, of ripples in universal fields of force. Unlike the
average reader of Cosmic Stories in 1941, you now possess enough technical
background to understand what a “force field” really is.
110
5.1 Why Fields?
Time delays in forces exerted at a distance
What convinced physicists that they needed this new concept of a field
of force? Although we have been dealing mostly with electrical forces, let’s
start with a magnetic example. (In fact the main reason I’ve delayed a
detailed discussion of magnetism for so long is that mathematical calculations
of magnetic effects are handled much more easily with the concept of
a field of force.) First a little background leading up to our example. A bar
magnet, (a), has an axis about which many of the electrons’ orbits are
oriented. The earth itself is also a magnet, although not a bar-shaped one.
The interaction between the earth-magnet and the bar magnet, (b), makes
them want to line up their axes in opposing directions (in other words such
that their electrons rotate in parallel planes, but with one set rotating
clockwise and the other counterclockwise as seen looking along the axes).
On a smaller scale, any two bar magnets placed near each other will try to
align themselves head-to-tail, (c).
Now we get to the relevant example. It is clear that two people separated
by a paper-thin wall could use a pair of bar magnets to signal to each
other. Each person would feel her own magnet trying to twist around in
response to any rotation performed by the other person’s magnet. The
practical range of communication would be very short for this setup, but a
sensitive electrical apparatus could pick up magnetic signals from much
farther away. In fact, this is not so different from what a radio does: the
electrons racing up and down the transmitting antenna create forces on the
electrons in the distant receiving antenna. (Both magnetic and electric
forces are involved in real radio signals, but we don’t need to worry about
that yet.)
A question now naturally arises as to whether there is any time delay in
this kind of communication via magnetic (and electric) forces. Newton
would have thought not, since he conceived of physics in terms of instantaneous
action at a distance. We now know, however, that there is such a time
delay. If you make a long-distance phone call that is routed through a
communications satellite, you should easily be able to detect a delay of
about half a second over the signal’s round trip of 50,000 miles. Modern
measurements have shown that electric, magnetic, and gravitational forces
all travel at the speed of light, 3×108 m/s. (In fact, we will soon discuss how
light itself is made of electricity and magnetism.)
If it takes some time for forces to be transmitted through space, then
apparently there is some thing that travels through space. The fact that the
phenomenon travels outward at the same speed in all directions strongly
evokes wave metaphors such as ripples on a pond.
More evidence that fields of force are real: they carry energy.
The smoking-gun argument for this strange notion of traveling force
ripples comes from the fact that they carry energy.
First suppose that the person holding the bar magnet on the right
decides to reverse hers, resulting in configuration (d). She had to do mechanical
work to twist it, and if she releases the magnet, energy will be
N
S
(a)
(b)
N
S
(c)
(d)
(e)
N
S
S
N
N
S
N
S
S
N
N
S
Chapter 5 Fields of Force
111
released as it flips back to (c). She has apparently stored energy by going
from (c) to (d). So far everything is easily explained without the concept of
a field of force.
But now imagine that the two people start in position (c) and then
simultaneously flip their magnets extremely quickly to position (e), keeping
them lined up with each other the whole time. Imagine, for the sake of
argument, that they can do this so quickly that each magnet is reversed
while the force signal from the other is still in transit. (For a more realistic
example, we’d have to have two radio antennas, not two magnets, but the
magnets are easier to visualize.) During the flipping, each magnet is still
feeling the forces arising from the way the other magnet used to be oriented.
Even though the two magnets stay aligned during the flip, the time delay
causes each person to feel resistance as she twists her magnet around. How
can this be? Both of them are apparently doing mechanical work, so they
must be storing magnetic energy somehow. But in the traditional Newtonian
conception of matter interacting via instantaneous forces at a distance,
potential energy arises from the relative positions of objects that are interacting
via forces. If the magnets never changed their orientations relative to
each other, how can any potential energy have been stored?
The only possible answer is that the energy must have gone into the
magnetic force ripples crisscrossing the space between the magnets. Fields of
force apparently carry energy across space, which is strong evidence that
they are real things.
This is perhaps not as radical an idea to us as it was to our ancestors.
We are used to the idea that a radio transmitting antenna consumes a great
deal of power, and somehow spews it out into the universe. A person
working around such an antenna needs to be careful not to get too close to
it, since all that energy can easily cook flesh (a painful phenomenon known
as an “RF burn”).
Section 5.1 Why Fields?
112
5.2 The Gravitational Field
Given that fields of force are real, how do we define, measure, and
calculate them? A fruitful metaphor will be the wind patterns experienced
by a sailing ship. Wherever the ship goes, it will feel a certain amount of
force from the wind, and that force will be in a certain direction. The
weather is ever-changing, of course, but for now let’s just imagine steady
wind patterns. Definitions in physics are operational, i.e. they describe how
to measure the thing being defined. The ship’s captain can measure the
wind’s “field of force” by going to the location of interest and determining
both the direction of the wind and the strength with which it is blowing.
Charting all these measurements on a map leads to a depiction of the field
of wind force like the one shown in the figure. This is known as the “sea of
arrows” method of visualizing a field.
Now let’s see how these concepts are applied to the fundamental force
fields of the universe. We’ll start with the gravitational field, which is the
easiest to understand. As with the wind patterns, we’ll start by imagining
gravity as a static field, even though the existence of the tides proves that
there are continual changes in the gravity field in our region of space.
Defining the direction of the gravitational field is easy enough: we simply
go to the location of interest and measure the direction of the gravitational
force on an object, such as a weight tied to the end of a string.
But how should we define the strength of the gravitational field?
Gravitational forces are weaker on the moon than on the earth, but we
cannot specify the strength of gravity simply by giving a certain number of
newtons. The number of newtons of gravitational force depends not just on
the strength of the local gravitational field but also on the mass of the object
on which we’re testing gravity, our “test mass.” A boulder on the moon feels
a stronger gravitational force than a pebble on the earth. We can get around
this problem by defining the strength of the gravitational field as the force
acting on an object, divided by the object’s mass.
definition of the gravitational field
The gravitational field vector, g, at any location in space is found by
placing a test mass mt at that point. The field vector is then given by
g=F/mt, where F is the gravitational force on the test mass.
The magnitude of the gravitational field near the surface of the earth is
about 9.8 N/kg, and it’s no coincidence that this number looks familiar, or
that the symbol g is the same as the one for gravitational acceleration. The
force of gravity on a test mass will equal mt g, where g is the gravitational
acceleration. Dividing by mt simply gives the gravitational acceleration.
Why define a new name and new units for the same old quantity? The main
reason is that it prepares us with the right approach for defining other fields.
The most subtle point about all this is that the gravitational field tells us
about what forces would be exerted on a test mass by the earth, sun, moon,
and the rest of the universe, if we inserted a test mass at the point in
question. The field still exists at all the places where we didn’t measure it.
The wind patterns in a certain area of
the ocean could be charted in a “sea
of arrows” representation like this.
Each arrow represents both the wind’s
strength and its direction at a certain
location.
Chapter 5 Fields of Force
113
Example: gravitational field of the earth
Question: What is the magnitude of the earth’s gravitational
field, in terms of its mass, M, and the distance r from its center?
Solution: Substituting F =GM mt / r 2 into the definition of the
gravitational field, we find g =GM / r 2 .
Sources and sinks
If we make a sea-of-arrows picture of the gravitational fields surrounding
the earth, (a), the result is evocative of water going down a drain. For
this reason, anything that creates an inward-pointing field around itself is
called a sink. The earth is a gravitational sink. The term “source” can refer
specifically to things that make outward fields, or it can be used as a more
general term for both “outies” and “innies.” However confusing the terminology,
we know that gravitational fields are only attractive, so we will never
find a region of space with an outward-pointing field pattern.
Knowledge of the field is interchangeable with knowledge of its sources
(at least in the case of a static, unchanging field). If aliens saw the earth’s
gravitational field pattern they could immediately infer the existence of the
planet, and conversely if they knew the mass of the earth they could predict
its influence on the surrounding gravitational field.
Superposition of fields
A very important fact about all fields of force is that when there is more
than one source (or sink), the fields add according to the rules of vector
addition. The gravitational field certainly will have this property, since it is
defined in terms of the force on a test mass, and forces add like vectors.
Superposition is an important characteristics of waves, so the superposition
property of fields is consistent with the idea that disturbances can propagate
outward as waves in a field.
Example: reduction in gravity on Io due to Jupiter’s gravity
Question: The average gravitational field in Jupiter’s moon Io is
1.81 N/kg. By how much is this reduced when Jupiter is directly
overhead? Io’s orbit has a radius of 4.22×108 m, and Jupiter’s
mass is 1.899×1027 kg.
Solution:
By the shell theorem, we can treat the Jupiter as if its mass
was all concentrated at its center, and likewise for Io. If we visit Io
and land at the point where Jupiter is overhead, we are on the
same line as these two centers, so the whole problem can be
treated one-dimensionally, and vector addition is just like scalar
addition. Let’s use positive numbers for downward fields (toward
the center of Io) and negative for upward ones. Plugging the
appropriate data into the expression GM / r 2 derived in the
previous example, we find that the Jupiter’s contribution to the
field is –0.71 N/kg. Superposition says that we can find the actual
gravitational field by adding up the fields created by Io and
Jupiter: 1.81–0.71=1.1 N/kg.
You might think that this reduction would create some
spectacular effects, and make Io an exciting tourist destination.
Actually you would not detect any difference if you flew from one
side of Io to the other. This is because your body and Io both
experience Jupiter’s gravity, so you follow the same orbital curve
through the space around Jupiter.
(a) The gravitational field surrounding
a clump of mass such as the earth.
(b) The gravitational fields of the earth
and moon superpose. Note how the
fields cancel at one point, and how
there is no boundary between the interpenetrating
fields surrounding the
two bodies.
Section 5.2 The Gravitational Field
114
Gravitational waves
A source that sits still will create a static field pattern, like a steel ball
sitting peacefully on a sheet of rubber. A moving source will create a
spreading wave pattern in the field, like a bug thrashing on the surface of a
pond. Although we have started with the gravitational field as the simplest
example of a static field, stars and planets do more stately gliding than
thrashing, so gravitational waves are not easy to detect. Newton’s theory of
gravity does not describe gravitational waves, but they are predicted by
Einstein’s general theory of relativity. J.H. Taylor and R.A. Hulse were
awarded the Nobel Prize in 1993 for giving indirect evidence that Einstein’s
waves actually exist. They discovered a pair of exotic, ultra-dense stars called
neutron stars orbiting one another very closely, and showed that they were
losing orbital energy at the rate predicted by Einstein’s theory. A CalTech-
MIT collaboration is currently building a pair of gravitational wave detectors
called LIGO to search for more direct evidence of gravitational waves.
Since they are essentially the most sensitive vibration detectors ever made,
they are being built in quiet rural areas, and signals will be compared
between them to make sure that they were not due to passing trucks. The
project only has enough funding to keep the detectors operating for a few
years after they become operational in 2000, and they can only hope that
during that time, somewhere in the universe, a sufficiently violent cataclysm
will occur to make a detectable gravitational wave. (More accurately, they
want the wave to arive in our solar system during that time, although it will
have been produced millions of years before.)
5.3 The Electric Field
Definition
The definition of the electric field is directly analogous to, and has the
same motivation as, the definition of the gravitational field:
definition of the electric field
The electric field vector, E, at any location in space is found by
placing a test charge qt at that point. The electric field vector is then
given by E=F/qt, where F is the electric force on the test charge.
Charges are what create electric fields. Unlike gravity, which is always
attractive, electricity displays both attraction and repulsion. A positive
charge is a source of electric fields, and a negative one is a sink.
The most difficult point about the definition of the electric field is that
the force on a negative charge is in the opposite direction compared to the
field. This follows from the definition, since dividing a vector by a negative
number reverses its direction. It is as though we had some objects that fell
upward instead of down.
Self-Check
Find an equation for the magnitude of the field of a single point charge Q.
[Answer on the next page.]
The LIGO detector in Louisiana. More
information about LIGO is available on
the world wide web at
http://www.ligo.caltech.edu.
Chapter 5 Fields of Force
115
Example: superposition of electric fields
Question: Charges q and –q are at a distance b from each other,
as shown in the figure. What is the electric field at the point P,
which lies at a third corner of the square?
Solution: The field at P is the vector sum of the fields that would
have been created by the two charges independently. Let
positive x be to the right and let positive y be up.
Negative charges have fields that point at them, so the
charge –q makes a field that points to the right, i.e. has a positive
x component. Using the answer to the self-check, we have
E–q,x = kq/b2
E–q,y = 0 .
Note that if we had blindly ignored the absolute value signs and
plugged in –q to the equation, we would have incorrectly concluded
that the field went to the left.
By the Pythagorean theorem, the positive charge is at a
distance 2 b from P, so the magnitude of its contribution to the
field is kq / 2b 2
=kq/2b2. Positive charges have fields that point
away from them, so the field vector is at an angle of 135° counterclockwise
from the x axis.
Eq,x = (kq/2b2) cos 135°
= – k q
2 2b 2
Eq,y = (kq/2b2) sin 135°
= k q
2 2b 2
The total field is
Ex
= kq
b 2 1 – 1
2 2
Ey
= k q
2 2b 2
The reasoning is exactly analogous to that used in the previous section to derive an equation for the gravitational
field of the Earth. The magnitude of the field is |F|/qt = |kQqt/r2|/qt = k|Q|/r2.
–q
q
P
Section 5.3 The Electric Field
116
Dipoles
The simplest set of sources that can occur with electricity but not with
gravity is the dipole, (a), consisting of a positive charge and a negative charge
with equal magnitudes. More generally, an electric dipole can be any object
with an imbalance of positive charge on one side and negative on the other.
A water molecule, (b), is a dipole because the electrons tend to shift away
from the hydrogen atoms and onto the oxygen atom.
Your microwave oven acts on water molecules with electric fields. Let us
imagine what happens if we start with a uniform electric field, (c), made by
some external charges, and then insert a dipole, (d), consisting of two
charges connected by a rigid rod. The dipole disturbs the field pattern, but
more important for our present purposes is that it experiences a torque. In
this example, the positive charge feels an upward force, but the negative
charge is pulled down. The result is that the dipole wants to align itself with
the field, (e). The microwave oven heats food with electrical (and magnetic)
waves. The alternation of the torque causes the molecules to wiggle and
increase the amount of random motion. The slightly vague definition of a
dipole given above can be improved by saying that a dipole is any object
that experiences a torque in an electric field.
What determines the torque on a dipole placed in an externally created
field? Torque depends on the force, the distance from the axis at which the
force is applied, and the angle between the force and the line from the axis
to the point of application. Let a dipole consisting of charges +q and –q
separated by a distance be placed in an external field of magnitude |E|, at
an angle q with respect to the field. The total torque on the dipole is
t =
2
q E sin q +
2
q E sin q
= q  E sin q .
(Note that even though the two forces are in opposite directions, the
torques do not cancel, because they are both trying to twist the dipole in
the same direction.) The quantity q is called the dipole moment, notated
D. (More complex dipoles can also be assigned a dipole moment — they are
defined as having the same dipole moment as the two-charge dipole that
would experience the same torque.)

+
(a) A dipole field. Electric fields diverge
from a positive charge and converge
on a negative charge.
(b) A water molecule is a dipole.
– –
+ +

+
(c) (d) (e)
Chapter 5 Fields of Force
117
Example: dipole moment of a molecule of NaCl gas
Question: In a molecule of NaCl gas, the center-to-center
distance between the two atoms is about 0.6 nm. Assuming that
the chlorine completely steals one of the sodium’s electrons,
compute this molecule’s dipole moment.
Solution: The dipole moment is
q = (6×10 –10 m)(e)
= (6×10 –10 m)(1.6×10 –19 C)
= 1×10 –28 C . m
Alternative definition of the electric field
The behavior of a dipole in an externally created field leads us to an
alternative definition of the electric field:
alternative definition of the electric field
The electric field vector, E, at any location in space is defined by
observing the torque exerted on a test dipole Dt placed there. The
direction of the field is the direction in which the field tends to align a
dipole (from – to +), and the field’s magnitude is |E| = t/Dt sin q.
The main reason for introducing a second definition for the same concept is
that the magnetic field is most easily defined using a similar approach.
Section 5.3 The Electric Field
118
Voltage related to electric field
Voltage is potential energy per unit charge, and electric field is force per
unit charge. We can therefore relate voltage and field if we start from the
relationship between potential energy and force,
DPE = –Fd [assuming constant force and
motion parallel to the force],
and divide by charge,
DP E
q = –Fd
q [assuming constant force and
motion parallel to the force],
giving
DV = –Ed [assuming constant field and
motion parallel to the field].
In other words, the difference in voltage between two points equals the
electric field strength multiplied by the distance between them. The
interpretation is that a strong electric field is a region of space where the
voltage is rapidly changing. By analogy, a steep hillside is a place on the map
where the altitude is rapidly changing.
Example: field generated by an electric eel
Question: Suppose an electric eel is 1 m long, and generates a
voltage difference of 1000 volts between its head and tail. What
is the electric field in the water around it?
Solution: We are only calculating the amount of field, not its
direction, so we ignore positive and negative signs. Subject to
the possibly inaccurate assumption of a constant field parallel to
the eel’s body, we have
E = DV/d
= 1000 V/m .
Example: relating the units of electric field and voltage
From our original definition of the electric field, we expect it to
have units of newtons per coulomb, N/C. The example above,
however, came out in volts per meter, V/m. Are these inconsistent?
Let’s reassure ourselves that this all works. In this kind of
situation, the best strategy is usually to simplify the more complex
units so that they involve only mks units and coulombs.
Since voltage is defined as potential energy per unit charge, it
has units of J/C:
Vm
=
J C Cm
= J
C×m .
To connect joules to newtons, we recall that work equals force
times distance, so J=N.m, so
Vm
= N ×  m
C×m
= N
C
As with other such difficulties with electrical units, one quickly
begins to recognize frequently occurring combinations.
Chapter 5 Fields of Force
119
Discussion Questions
A. In the definition of the electric field, does the test charge need to be 1
coulomb? Does it need to be positive?
B. Does a charged particle such as an electron or proton feel a force from its
own electric field?
C. Is there an electric field surrounding a wall socket that has nothing plugged
into it, or a battery that is just sitting on a table?
D. In a flashlight powered by a battery, which way do the electric fields point?
What would the fields be like inside the wires? Inside the filament of the bulb?
E. Criticize the following statement: “An electric field can be represented by a
sea of arrows showing how current is flowing.”
F. The field of a point charge, |E|=kQ/r2, was derived in the self-check above.
How would the field pattern of a uniformly charged sphere compare with the
field of a point charge?
G. The interior of a perfect electrical conductor in equilibrium must have zero
electric field, since otherwise the free charges within it would be drifting in
response to the field, and it would not be in equilibrium. What about the field
right at the surface of a perfect conductor? Consider the possibility of a field
perpendicular to the surface or parallel to it.
H. Compare the dipole moments of the molecules and molecular ions shown in
the figure.
I. Small pieces of paper that have not been electrically prepared in any way
can be picked up with a charged object such as a charged piece of tape. In our
new terminology, we could describe the tape’s charge as inducing a dipole
moment in the paper. Can a similar technique be used to induce not just a
dipole moment but a charge?
Discussion question H.
––
+
+
––
+ +
+


+
––
+
1 2
3 4
Section 5.3 The Electric Field
120
5.4ò Voltage for Nonuniform Fields
The calculus-savvy reader will have no difficulty generalizing the fieldvoltage
relationship to the case of a varying field. The potential energy
associated with a varying force is
DPE = – F dx [one dimension],
so for electric fields we divide by q to find
DV = – E dx [one dimension].
Applying the fundamental theorem of calculus yields
E = – d V
dx
[one dimension].
Example: voltage associated with a point charge
Question: What is the voltage associated with a point charge?
Solution: As derived previously in a self-check, the field is
|E| = k
q
r 2
The difference in voltage between two points on the same radius
line is
DV = – E dx
In the general discussion above, x was just a generic name for
distance traveled along the line from one point to the other, so in
this case x really means r .
DV =
– k
q
r 2dr
r 1
r 2
=
–kq – 1
r 2
– –1
r 1
= kq 1
r 2
– 1
r 1
.
The standard convention is to use r
1=¥ as a reference point, so
that the voltage is
V = kq
r .
The interpretation is that if you bring a positive test charge closer
to a positive charge, its potential energy is increased; if it was
released, it would spring away, releasing this as kinetic energy.
Self-Check
Show that you can recover the expression for the field of a point charge by
evaluating the derivative E = –dV/dx.
Chapter 5 Fields of Force
121
5.5 Two or Three Dimensions
The topographical map shown in figure (a) suggests a good way to
visualize the relationship between field and voltage in two dimensions. Each
contour on the map is a line of constant height; some of these are labeled
with their elevations in units of feet. Height is related to gravitational
potential energy, so in a gravitational analogy, we can think of height as
representing voltage. Where the contour lines are far apart, as in the town,
the slope is gentle. Lines close together indicate a steep slope.
If we walk along a straight line, say straight east from the town, then
height (voltage) is a function of the east-west coordinate x. Using the usual
mathematical definition of the slope, and writing V for the height in order
to remind us of the electrical analogy, the slope along such a line is DV/Dx,
or dV/dx if the slope isn’t constant.
What if everything isn’t confined to a straight line? Water flows downhill.
Notice how the streams on the map cut perpendicularly through the
lines of constant height.
It is possible to map voltages in the same way, as shown in figure (b).
The electric field is strongest where the constant-voltage curves are closest
together, and the electric field vectors always point perpendicular to the
constant-voltage curves.
The figures on the following page show some examples of ways to
visualize field and voltage patterns.
Mathematically, the calculus of the preceding section generalizes to
three dimensions as follows:
Ex = –dV/dx
Ey = –dV/dy
Ez = –dV/dz
Self-Check
Imagine that the topographical map represents voltage rather than height.
(a) Consider the stream the starts near the center of the map. Determine the
positive and negative signs of dV/dx and dV/dy, and relate these to the
direction of the force that is pushing the current forward against the resistance
of friction. (b) If you wanted to find a lot of electric charge on this map, where
would you look?
(a) A 19th century USGS topographical
map of Shelburne Falls, Mass.
(b) The constant-voltage curves surrounding
a point charge. Near the
charge, the curves are so closely
spaced that they blend together on this
drawing due to the finite width with
which they were drawn. Some electric
fields are shown as arrows.
1V
2V
3V
(a) The voltage (height) increases as you move to the east or north. If we let the positive x direction be east, and
choose positive y to be north, then dV/dx and dV/dy are both positive. This means that E
x and E
y are both negative,
which makes sense, since the water is flowing in the negative x and y directions (south and west). (b) The electric
fields are all pointing away from the higher ground. If this was an electrical map, there would have to be a large
concentration of charge all along the top of the ridge, and especially at the mountain peak near the south end.
Section 5.4ò Voltage for Nonuniform Electric Fields
122
– +
Two-dimensional field and voltage patterns.
Top: A uniformly charged rod. Bottom: A dipole.
In each case, the diagram on the left shows the field vectors and constant-voltage curves, while the one on the right shows
the voltage (up-down coordinate) as a function of x and y.
Interpreting the field diagrams: Each arrow represents the field at the point where its tail has been positioned. For clarity,
some of the arrows in regions of very strong field strength are not shown — they would be too long to show.
Interpreting the constant-voltage curves: In regions of very strong fields, the curves are not shown because they would
merge together to make solid black regions.
Interpreting the perspective plots: Keep in mind that even though we’re visualizing things in three dimensions, these are
really two-dimensional voltage patterns being represented. The third (up-down) dimension represents voltage, not position.
123
5.6*ò Electric Field of a Continuous Charge Distribution
Charge really comes in discrete chunks, but often it is mathematically
convenient to treat a set of charges as if they were like a continuous fluid
spread throughout a region of space. For example, a charged metal ball will
have charge spread nearly uniformly all over its surface, and in for most
purposes it will make sense to ignore the fact that this uniformity is broken
at the atomic level. The electric field made by such a continuous charge
distribution is the sum of the fields created by every part of it. If we let the
“parts” become infinitesimally small, we have a sum of an infinite number
of infinitesimal numbers, which is an integral. If it was a discrete sum, we
would have a total electric field in the x direction that was the sum of all the
x components of the individual fields, and similarly we’d have sums for the y
and z components. In the continuous case, we have three integrals.
Example: field of a uniformly charged rod
Question: A rod of length L has charge Q spread uniformly along
it. Find the electric field at a point a distance d from the center of
the rod, along the rod’s axis.
Solution:
Let x=0 be the center of the rod, and let the positive x axis be
to the right. This is a one-dimensional situation, so we really only
need to do a single integral representing the total field along the
x axis. We imagine breaking the rod down into short pieces of
length dx, each with charge dq. Since charge is uniformly spread
along the rod, we have dq=(dx/L)Q. Since the pieces are infinitesimally
short, we can treat them as point charges and use the
expression kdq/r2 for their contributions to the field, where r=d–x
is the distance from the charge at x to the point in which we are
interested.
Ex
= k dq
r 2
=
k dx Q
L r 2
– L / 2
L / 2
=
kQ
L
dx
d – x 2
– L / 2
L / 2
The integral can be looked up in a table, or reduced to an
elementary form by substituting a new variable for d-x. The result
is
Ex
= kQ
L
1
d – x – L / 2
L / 2
= kQ
L
1
d – L / 2
– 1
d + L / 2 .
For large values of d, the expression in brackets gets smaller
for two reasons: (1) the denominators of the fractions become
large, and (2) the two fractions become nearly the same, and
tend to cancel out. This makes sense, since the field should get
weaker for larger values of d.
It is also interesting to note that the field becomes infinite at
the ends of the rod, but is not infinite on the interior of the rod.
Can you explain physically why this happens?
L
d
Section 5.5*ò Electric Field of a Continuous Charge Distribution
124
Summary
Selected Vocabulary
field …………………………………. a property of a point in space describing the forces that would be
exerted on a particle if it was there
sink …………………………………. a point at which field vectors converge
source ………………………………. a point from which field vectors diverge; often used more inclusively
to refer to points of either convergence or divergence
electric field ………………………. the force per unit charge exerted on a test charge at a given point in
space
gravitational field ……………….. the force per unit mass exerted on a test mass at a given point in
space
electric dipole ……………………. an object that has an imbalance between positive charge on one side
and negative charge on the other; an object that will experience a
torque in an electric field
Notation
g …………………………………. the gravitational field
E ………………………………… the electric field
D………………………………… an electric dipole moment
Notation Used in Other Books
d,p,m …………………………… other notations for the electric dipole moment
Summary
Newton conceived of a universe where forces reached across space instantaneously, but we now know
that there is a delay in time before a change in the configuration of mass and charge in one corner of the
universe will make itself felt as a change in the forces experienced far away. We imagine the outward
spread of such a change as a ripple in an invisible universe-filling field of force.
We define the gravitational field at a given point as the force per unit mass exerted on objects inserted
at that point, and likewise the electric field is defined as the force per unit charge. These fields are vectors,
and the fields generated by multiple sources add according to the rules of vector addition.
When the electric field is constant, the voltage difference between two points lying on a line parallel to
the field is related to the field by the equation DV = –Ed, where d is the distance between the two points.
Chapter 5 Fields of Force
125
Problem 1.
Homework Problems
1 3. In our by-now-familiar neuron, the voltage difference between the
inner and outer surfaces of the cell membrane is about Vout-Vin = –70 mV
in the resting state, and the thickness of the membrane is about 6.0 nm
(i.e. only about a hundred atoms thick). What is the electric field inside
the membrane?
2. (a3) The gap between the electrodes in an automobile engine’s spark
plug is 0.060 cm. To produce an electric spark in a gasoline-air mixture,
an electric field of 3.0×106 V/m must be achieved. On starting a car, what
minimum voltage must be supplied by the ignition circuit? Assume the
field is constant. (b) The small size of the gap between the electrodes is
inconvenient because it can get blocked easily, and special tools are needed
to measure it. Why don’t they design spark plugs with a wider gap?
3. (a) At time t=0, a small, positively charged object is placed, at rest, in a
uniform electric field of magnitude E. Write an equation giving its speed,
v, in terms of t, E, and its mass and charge m and q.
(b) If this is done with two different objects and they are observed to have
the same motion, what can you conclude about their masses and charges?
(For instance, when radioactivity was discovered, it was found that one
form of it had the same motion as an electron in this type of experiment.)
4«. Show that the magnitude of the electric field produced by a simple
two-charge dipole, at a distant point along the dipole’s axis, is to a good
approximation proportional to D/r3, where r is the distance from the
dipole. [Hint: Use the approximation 1 +  e p » 1 +pe , which is valid for
small e.]
5ò. Given that the field of a dipole is proportional to D/r3 (see previous
problem), show that its voltage varies as D/r2. (Ignore positive and negative
signs and numerical constants of proportionality.)
6ò. A carbon dioxide molecule is structured like O-C-O, with all three
atoms along a line. The oxygen atoms grab a little bit of extra negative
charge, leaving the carbon positive. The molecule’s symmetry, however,
means that it has no overall dipole moment, unlike a V-shaped water
molecule, for instance. Whereas the voltage of a dipole of magnitude D
is proportional to D/r2 (see previous problem), it turns out that the voltage
of a carbon dioxide molecule along its axis equals k/r3, where r is the
distance from the molecule and k is a constant. What would be the
electric field of a carbon dioxide molecule at a distance r?
7 ò. A proton is in a region in which the electric field is given by E=a+bx3.
If the proton starts at rest at x1=0, find its speed, v, when it reaches
position x2. Give your answer in terms of a, b, x2, and e and m, the charge
and mass of the proton.
S A solution is given in the back of the book. « A difficult problem.
3 A computerized answer check is available. ò A problem that requires calculus.
Homework Problems
126
q1
q1
q2
Problem 11.
8«. Consider the electric field created by a uniform ring of total charge q
and radius b. (a) Show that the field at a point on the ring’s axis at a
distance a from the plane of the ring is kqa(a2+b2) –3/2. (b) Show that this
expression has the right behavior for a=0 and for a much greater than b.
9òS.Consider the electric field created by an infinite uniformly charged
plane. Starting from the result of problem 8, show that the field at any
point is 2pks, where s is the density of charge on the plane, in units of
coulombs per square meter. Note that the result is independent of the
distance from the plane. [Hint: Slice the plane into infinitesimal concentric
rings, centered at the point in the plane closest to the point at which
the field is being evaluated. Integrate the rings’ contributions to the field at
this point to find the total field.]
10ò. Consider the electric field created by a uniformly charged cylinder
which extends to infinity in one direction. (a) Starting from the result of
problem 8, show that the field at the center of the cylinder’s mouth is
2pks, where s is the density of charge on the cylinder, in units of coulombs
per square meter. [Hint: You can use a method similar to the one in
problem 8.] (b) This expression is independent of the radius of the
cylinder. Explain why this should be so. For example, what would happen
if you doubled the cylinder’s radius?
11 S. Three charges are arranged on a square as shown. All three charges
are positive. What value of q2/q1 will produce zero electric field at the
center of the square?
Chapter 5 Fields of Force
127
6 Electromagnetism
Everyone knows the story of how the nuclear bomb influenced the end
of World War II. The Hiroshima and Nagasaki bombings, however, came
when Germany was already defeated and Japan’s surrender was only a
matter of time.* Far less well known, but more important to the outcome of
the war, was a different contribution from physics: radar. This new technology,
based on the work of theoretical physicists James Clerk Maxwell in the
previous century, played a decisive role in the air war known as the Battle of
Britain. If not for the English radar defenses, Hitler might have succeeded
in conquering Britain and gone on to win the war.
In this chapter, we discuss the magnetic field, its intimate relationship
to the electric field, and the existence of waves made of electric and magnetic
fields linked to each other.
A World Ward II radar installation in
Sitka, Alaska.
*The bombings were a sad appearance of physics on the stage of history. Many of the physicists working on the bombs
had assumed that they would only be used for demonstrations, not in a first strike on cities, but criticism after the fact was
muted, partly because of relief that there would not have to be an invasion of Japan against fierce resistance. (On a
personal note, both my grandfathers were in the Pacific during the war, and it’s not unlikely that they would have been
killed during such an invasion.) Numerically, the number of people killed in the American firebombing of Tokyo was
comparable to the number who died in the later nuclear attacks, and both were dwarfed by the toll of Chinese civilians
raped or killed by the Japanese at Nanking, an atrocity that some have compared to the Holocaust. Nevertheless, one
can’t help feeling that unleashing nuclear weapons for the first time was a different thing, a breaking of a kind of taboo.
Many physicists, even those born after 1945, feel a sense of collective guilt that their art led to an era in which nuclear
weapons endanger our whole biosphere. That era did not end along with the Cold War, and only time will tell whether
nuclear weapons will be used again — in Pakistan and India, or somewhere else.
128
6.1 The Magnetic Field
No magnetic monopoles
If you could play with a handful of electric dipoles and a handful of bar
magnets, they would appear very similar. For instance, a pair of bar magnets
wants to align themselves head-to-tail, and a pair of electric dipoles does the
same thing. (It is unfortunately not that easy to make a permanent electric
dipole that can be handled like this, since the charge tends to leak.)
You would eventually notice an important difference between the two
types of objects, however. The electric dipoles can be broken apart to form
isolated positive charges and negative charges. The two-ended device can be
broken into parts that are not two-ended. But if you break a bar magnet in
half, (a), you will find that you have simply made two smaller two-ended
objects.
The reason for this behavior is not hard to divine from our microscopic
picture of permanent iron magnets. An electric dipole has extra positive
“stuff ” concentrated in one end and extra negative in the other. The bar
magnet, on the other hand, gets its magnetic properties not from an
imbalance of magnetic “stuff ” at the two ends but from the orientation of
the rotation of its electrons. One end is the one from which we could look
down the axis and see the electrons rotating clockwise, and the other is the
one from which they would appear to go counterclockwise. There is no
difference between the “stuff ” in one end of the magnet and the other, (b).
Nobody has ever succeeded in isolating a single magnetic pole. In
technical language, we say that magnetic monopoles do not seem to exist.
Electric monopoles do exist — that’s what charges are.
Electric and magnetic forces seem similar in many ways. Both act at a
distance, both can be either attractive or repulsive, and both are intimately
related to the property of matter called charge. (Recall that magnetism is an
interaction between moving charges.) Physicists’s aesthetic senses have been
offended for a long time because this seeming symmetry is broken by the
existence of electric monopoles and the absence of magnetic ones. Perhaps
some exotic form of matter exists, composed of particles that are magnetic
monopoles. If such particles could be found in cosmic rays or moon rocks,
it would be evidence that the apparent asymmetry was only an asymmetry
in the composition of the universe, not in the laws of physics. For these
admittedly subjective reasons, there have been several searches for magnetic
monopoles. Experiments have been performed, with negative results, to
look for magnetic monopoles embedded in ordinary matter. Soviet physicists
in the 1960s made exciting claims that they had created and detected
magnetic monopoles in particle accelerators, but there was no success in
attempts to reproduce the results there or at other accelerators. The most
recent search for magnetic monopoles, done by reanalyzing data from the
search for the top quark at Fermilab, turned up no candidates, which shows
that either monopoles don’t exist in nature or they are extremely massive
and thus hard to create in accelerators.
S
N
S
N
S
N
S
N
S
N
(a)
(b)
Chapter 6 Electromagnetism
129
Definition of the magnetic field
Since magnetic monopoles don’t seem to exist, it would not make much
sense to define a magnetic field in terms of the force on a test monopole.
Instead, we follow the philosophy of the alternative definition of the electric
field, and define the field in terms of the torque on a magnetic test dipole.
This is exactly what a magnetic compass does: the needle is a little iron
magnet which acts like a magnetic dipole and shows us the direction of the
earth’s magnetic field.
To define the strength of a magnetic field, however, we need some way
of defining the strength of a test dipole, i.e. we need a definition of the
magnetic dipole moment. We could use an iron permanent magnet constructed
according to certain specifications, but such an object is really an
extremely complex system consisting of many iron atoms, only some of
which are aligned. A more fundamental standard dipole is a square current
loop. This could be little resistive circuit consisting of a square of wire
shorting across a battery.
We will find that such a loop, when placed in a magnetic field, experiences
a torque that tends to align plane so that its face points in a certain
direction. (Since the loop is symmetric, it doesn’t care if we rotate it like a
wheel without changing the plane in which it lies.) It is this preferred facing
direction that we will end up defining as the direction of the magnetic field.
Experiments show if the loop is out of alignment with the field, the
torque on it is proportional to the amount of current, and also to the
interior area of the loop. The proportionality to current makes sense, since
magnetic forces are interactions between moving charges, and current is a
measure of the motion of charge. The proportionality to the loop’s area is
also not hard to understand, because increasing the length of the sides of
the square increases both the amount of charge contained in this circular
“river” and the amount of leverage supplied for making torque. Two
separate physical reasons for a proportionality to length result in an overall
proportionality to length squared, which is the same as the area of the loop.
For these reasons, we define the magnetic dipole moment of a square
current loop as
Dm = IA [definition of the magnetic dipole moment
of a square loop] .
We now define the magnetic field in a manner entirely analogous to the
second definition of the electric field:
definition of the magnetic field
The magnetic field vector, B, at any location in space is defined by
observing the torque exerted on a magnetic test dipole Dmt consisting of
a square current loop. The field’s magnitude is |B| = t/Dmt sin q, where
q is the angle by which the loop is misaligned. The direction of the field
is perpendicular to the loop; of the two perpendiculars, we choose the
one such that if we look along it, the loop’s current is counterclockwise.
We find from this definition that the magnetic field has units of N.m/
A.m2=N/A.m. This unwieldy combination of units is abbreviated as the
tesla, 1 T=1 N/A.m. Refrain from memorizing the part about the counterclockwise
direction at the end; in section 6.4 we’ll see how to understand
(c) A standard dipole made from a
square loop of wire shorting across a
battery. It acts very much like a bar
magnet, but its strength is more easily
quantified.
N
S S
N
(d) A dipole tends to align itself to the
surrounding magnetic field.
B B B
Section 6.1 The Magnetic Field
130
this in terms of more basic principles.
The nonexistence of magnetic monopoles means that unlike an electric
field, (e), a magnetic one, (f ), can never have sources or sinks. The magnetic
field vectors lead in paths that loop back on themselves, without ever
converging or diverging at a point.
6.2 Calculating Magnetic Fields and Forces
Magnetostatics
Our study of the electric field built on our previous understanding of
electric forces, which was ultimately based on Coulomb’s law for the electric
force between two point charges. Since magnetism is ultimately an interaction
between currents, i.e. between moving charges, it is reasonable to wish
for a magnetic analog of Coulomb’s law, an equation that would tell us the
magnetic force between any two moving point charges.
Such a law, unfortunately, does not exist. Coulomb’s law describes the
special case of electrostatics: if a set of charges is sitting around and not
moving, it tells us the interactions among them. Coulomb’s law fails if the
charges are in motion, since it does not incorporate any allowance for the
time delay in the outward propagation of a change in the locations of the
charges.
A pair of moving point charges will certainly exert magnetic forces on
one another, but their magnetic fields are like the v-shaped bow waves left
by boats. Each point charge experiences a magnetic field that originated
from the other charge when it was at some previous position. There is no
way to construct a force law that tells us the force between them based only
on their current positions in space.
There is, however, a science of magnetostatics that covers a great many
important cases. Magnetostatics describes magnetic forces among currents
in the special case where the currents are steady and continuous, leading to
magnetic fields throughout space that do not change over time.
If we cannot build a magnetostatics from a force law for point charges,
then where do we start? It can be done, but the level of mathematics
required (vector calculus) is inappropriate for this course. Luckily there is an
alternative that is more within our reach. Physicists of generations past have
used the fancy math to derive simple equations for the fields created by
various static current distributions, such as a coil of wire, a circular loop, or
a straight wire. Virtually all practical situations can be treated either directly
using these equations or by doing vector addition, e.g. for a case like the
field of two circular loops whose fields add onto one another.

+
(e) (f)
Chapter 6 Electromagnetism
131
The figure shows the equations for some of the more commonly
encountered configurations, with illustrations of their field patterns. Do not
memorize the equations! The symbol mo is an abbreviation for the constant
4px10 –7 T.m/A. It is the magnetic counterpart of the Coulomb force
constant k. The Coulomb constant tells us how much electric field is
produced by a given amount of charge, while mo relates currents to magnetic
fields. Unlike k, mo has a definite numerical value because of the design of
the metric system.
Field created by a long, straight wire carrying current I:
B = mo I
2pr
Here r is the distance from the center of the wire. The field
vectors trace circles in planes perpendicular to the wire,
going clockwise when viewed from along the direction of the
current.
Field created by a single circular loop of current:
The field vectors form a dipole-like pattern, coming through
the loop and back around on the outside. Each oval path
traced out by the field vectors appears clockwise if viewed
from along the direction the current is going when it punches
through it. There is no simple equation for the field at an
arbitrary point in space, but for a point lying along the central
axis perpendicular to the loop, the field is
B =   12
moIb2 b2 + z 2
– 3 / 2
,
where b is the radius of the loop and z is the distance of the
point from the plane of the loop.
Field created by a solenoid (cylindrical coil):
The field pattern is similar to that of a single loop, but for a
long solenoid the paths of the field vectors become very
straight on the inside of the coil and on the outside immediately
next to the coil. For a sufficiently long solenoid, the
interior field also becomes very nearly uniform, with a
magnitude of
B = moI N   / ,
where N is the number of turns of wire and is the length of
the solenoid. (Textbooks often give this as moI n   , where
n = N / is the number of turns per unit length.) The field
near the mouths or outside the coil is not constant and more
difficult to calculate. (There is a fairly simple equation for the
field along the axis, inside and out, but we will not concern
ourselves with it.) For a long solenoid, the exterior field is
much smaller than the interior field.
I
I
I
Force on a charge moving through a magnetic field
We now know how to calculate magnetic fields in some typical situations,
but one might also like to be able to calculate magnetic forces, such as
the force of a solenoid on a moving charged particle, or the force between
two parallel current-carrying wires.
We will restrict ourselves to the case of the force on a charged particle
moving through a magnetic field, which allows us to calculate the force
Section 6.2 Calculating Magnetic Fields and Forces
132
between two objects when one is a moving charged particle and the other is
one whose magnetic field we know how to find. An example is the use of
solenoids inside a TV tube to guide the electron beam as it paints a picture.
Experiments show that the magnetic force on a moving charged particle
has a magnitude given by
F = q v  B sin q ,
where v is the velocity vector of the particle, and q is the angle between the
v and B vectors. Unlike electric and gravitational forces, magnetic forces do
not lie along the same line as the field vector. The force is always perpendicular
to both v and B. Given two vectors, there is only one line perpendicular
to both of them, so the force vector points in one of the two possible
directions along this line. For a positively charged particle, the direction of
the force vector is the one such that if you sight along it, the B vector is
clockwise from the v vector; for a negatively charged particle the direction
of the force is reversed. Note that since the force is perpendicular to the
particle’s motion, the magnetic field never does work on it.
Example: Hallucinations during an MRI scan
During an MRI scan of the head, the patient’s nervous system is
exposed to intense magnetic fields. The average velocities of the
charge-carrying ions in the nerve cells is fairly low, but if the
patient moves her head suddenly, the velocity can be high
enough that the magnetic field makes significant forces on the
ions. This can result in visual and auditory hallucinations, e.g.,
frying bacon sounds.
6.3 Induction
Electromagnetism and relative motion
The theory of electric and magnetic fields constructed up to this point
contains a paradox. One of the most basic principles of physics, dating back
to Newton and Galileo and still going strong today, states that motion is
relative, not absolute. Thus the laws of physics should not function any
differently in a moving frame of reference, or else we would be able to tell
which frame of reference was the one in an absolute state of rest. As an
example from mechanics, imagine that a child is tossing a ball up and down
in the back seat of a moving car. In the child’s frame of reference, the car is
at rest and the landscape is moving by; in this frame, the ball goes straight
up and down, and obeys Newton’s laws of motion and Newton’s law of
gravity. In the frame of reference of an observer watching from the sidewalk,
the car is moving and the sidewalk isn’t. In this frame, the ball follows a
parabolic arc, but it still obeys Newton’s laws.
When it comes to electricity and magnetism, however, we have a
problem, which was first clearly articulated by Einstein: if we state that
magnetism is an interaction between moving charges, we have apparently
created a law of physics that violates the principle that motion is relative,
since different observers in different frames would disagree about how fast
the charges were moving, or even whether they were moving at all. The
incorrect solution that Einstein was taught (and disbelieved) as a student
around the year 1900 was that the relative nature of motion applied only to
mechanics, not to electricity and magnetism. The full story of how Einstein
Chapter 6 Electromagnetism
Magnetic forces cause a beam of electrons
to move in a circle. The beam is
created in a vacuum tube, in which a
small amount of hydrogen gas has
been left. A few of the electrons strike
hydrogen molecules, creating light and
letting us see the beam. A magnetic
field is produced by passing a current
(meter) through the circular coils of
wire in front of and behind the tube. In
the bottom figure, with the magnetic
field turned on, the force perpendicular
to the electrons’ direction of motion
causes them to move in a circle.
133
S
N
x
y
z
+
restored the principle of relative motion to its rightful place in physics
involves his theory of special relativity, which we will not take up until book
6 of this series. However, a few simple and qualitative thought experiments
will suffice to show how, based on the principle that motion is relative,
there must be some new and previously unsuspected relationships between
electricity and magnetism. These relationships form the basis for many
practical, everyday devices, such as generators and transformers, and they
also lead to an explanation of light itself as an electromagnetic phenomenon.
Let’s imagine an electrical example of relative motion in the same spirit
as the story of the child in the back of the car. Suppose we have a line of
positive charges, (a). Observer A is in a frame of reference which is at rest
with respect to these charges, and observes that they create an electric field
pattern that points outward, away from the charges, in all directions, like a
bottle brush. Suppose, however, that observer B is moving to the right with
respect to the charges. As far as B is concerned, she’s the one at rest, while
the charges (and observer A) move to the left. In agreement with A, she
observes an electric field, but since to her the charges are in motion, she
must also observe a magnetic field in the same region of space, exactly like
the magnetic field made by a current in a long, straight wire.
Who’s right? They’re both right. In A’s frame of reference, there is only
an E, while in B’s frame there is both an E and a B. The principle of relative
motion forces us to conclude that depending on our frame of reference we
will observe a different combination of fields. Although we will not prove it
(the proof requires special relativity, which we get to in book 6), it is true
that either frame of reference provides a perfectly self-consistent description
of things. For instance, if an electron passes through this region of space,
both A and B will see it swerve, speed up, and slow down. A will successfully
explain this as the result of an electric field, while B will ascribe the
electron’s behavior to a combination of electric and magnetic forces.
Thus, if we believe in the principle of relative motion, then we must
accept that electric and magnetic fields are closely related phenomena, two
sides of the same coin.
Now consider figure (b). Observer A is at rest with respect to the bar
magnets, and sees the particle swerving off in the z direction, as it should
according to the rule given in section 6.2 (sighting along the force vector,
i.e. from behind the page, the B vector is clockwise from the v vector).
Suppose observer B, on the other hand, is moving to the right along the x
axis, initially at the same speed as the particle. B sees the bar magnets
moving to the left and the particle initially at rest but then accelerating
along the z axis in a straight line. It is not possible for a magnetic field to
start a particle moving if it is initially at rest, since magnetism is an interaction
of moving charges with moving charges. B is thus led to the inescapable
conclusion that there is an electric field in this region of space, which
points along the z axis. In other words, what A perceives as a pure B field, B
sees as a mixture of E and B.
In general, observers who are not at rest with respect to one another will
perceive different mixtures of electric and magnetic fields.
+ + + + + + + + +
(a) A line of positive charges.
(b) Observer A sees a positively
charged particle moves through a region
of upward magnetic field, which
we assume to be uniform, between the
poles of two magnets. The resulting
force along the z axis causes the
particle’s path to curve toward us.
Section 6.3 Induction
134
(c) The geometry of induced fields.
The induced field tends to form a whirlpool
pattern around the change in the
vector producing it. Note how they circulate
in opposite directions.
DE
B
DB
E
(f) A generator.
The principle of induction
So far everything we’ve been doing might not seem terribly useful, since
it seems that nothing surprising will happen as long as we stick to a single
frame of reference, and don’t worry about what people in other frames
think. That isn’t the whole story, however, as was discovered experimentally
by Faraday in 1831and explored mathematically by Maxwell later in the
same century. Let’s state Faraday’s idea first, and then see how something
like it must follow inevitably from the principle that motion is relative:
the principle of induction
Any electric field that changes over time will produce a magnetic field
in the space around it.
Any magnetic field that changes over time will produce an electric field
in the space around it.
The induced field tends to have a whirlpool pattern, as shown in figure (c),
but the whirlpool image is not to be taken too literally; the principle of
induction really just requires a field pattern such that, if one inserted a
paddlewheel in it, the paddlewheel would spin. All of the field patterns
shown in the following figure are ones that could be created by induction;
all have a counterclockwise “curl” to them:
(d) Observer A is at rest with respect
to the bar magnet, and observes magnetic
fields that have different
strengths at different distances from
the magnet.
Figures (d) and (e) show an example of the fundamental reason why a
changing B field must create an E field. The electric field would be inexplicable
to observer B if she believed only in Coulomb’s law, and thought that
all electric fields are made by electric charges. If she knows about the
principle of induction, however, the existence of this field is to be expected.
(e) Observer B, hanging out in the region to the left of the magnet, sees
the magnet moving toward her, and detects that the magnetic field in that
region is getting stronger as time passes. As in figure (b), there is an electric
field along the z axis because she’s in motion with respect to the magnet.
The DB vector is upward, and the electric field has a curliness to it: a
paddlewheel inserted in the electric field would spin clockwise as seen
from above, since the clockwise torque made by the strong electric field
on the right is greater than the counterclockwise torque made by the weaker
electric field on the left.
S
N
x
y
z
B
E E
B
Example: the generator
A generator, (f), consists of a permanent magnet that rotates
within a coil of wire. The magnet is turned by a motor or crank,
(not shown). As it spins, the nearby magnetic field changes.
According to the principle of induction, this changing magnetic
field results in an electric field, which has a whirlpool pattern.
This electric field pattern creates a current that whips around the
coils of wire, and we can tap this current to light the lightbulb.
S
N
x
y
z
B
B
Chapter 6 Electromagnetism
135
An example of induction (left) with a mechanical analogy
(right). The two bar magnets are initially pointing in
opposite directions, (a), and their magnetic fields cancel
out. If one magnet is flipped, (b), their fields reinforce,
but the change in the magnetic field takes time to spread
through space. Eventually, (c), the field becomes what
you would expect from the theory of magnetostatics. In
the mechanical analogy, the sudden motion of the hand
produces a violent kink or wave pulse in the rope, the
pulse travels along the rope, and it takes some time for
the rope to settle down. An electric field is also induced
in (b) by the changing magnetic field, even though there
is no net charge anywhere to to act as a source. (These
simplified drawings are not meant to be accurate representations
of the complete three-dimensional pattern of
electric and magnetic fields.)
distance
B
distance
B
distance
B
(a)
(c)
distance
E
distance
E
distance
E
(b)
input —
high voltage
low current
output —
low voltage
high current
(g) A transformer.
Self-Check
When you’re driving your car, the engine recharges the battery continuously
using a device called an alternator, which is really just a generator like the one
shown on the previous page, except that the coil rotates while the permanent
magnet is fixed in place. Why can’t you use the alternator to start the engine if
your car’s battery is dead?
Example: the transformer
In section 4.3 we discussed the advantages of transmitting
power over electrical lines using high voltages and low currents.
However, we don’t want our wall sockets to operate at 10000
volts! For this reason, the electric company uses a device called
a transformer, (g), to convert to lower voltages and higher
currents inside your house. The coil on the input side creates a
magnetic field. Transformers work with alternating current, so the
magnetic field surrounding the input coil is always changing. This
induces an electric field, which drives a current around the output
coil.
If both coils were the same, the arrangement would be
symmetric, and the output would be the same as the input, but
an output coil with a smaller number of coils gives the electric
forces a smaller distance through which to push the electrons.
Less mechanical work per unit charge means a lower voltage.
Conservation of energy, however, guarantees that the amount of
power on the output side must equal the amount put in originally,
IinVin=IoutVout, so this reduced voltage must be accompanied by an
increased current.
Discussion Question
In figures (b), (d), and (e), observer B is moving to the right. What would have
happened if she had been moving to the left?
An induced electric field can only be created by a changing magnetic field. Nothing is changing if your car is just
sitting there. A point on the coil won’t experience a changing magnetic field unless the coil is already metal spinning, i.e.
the engine has already turned over.
Section 6.3 Induction
136
6.4 Electromagnetic Waves
The most important consequence of induction is the existence of
electromagnetic waves. Whereas a gravitational wave would consist of
nothing more than a rippling of gravitational fields, the principle of induction
tells us that there can be no purely electrical or purely magnetic waves.
Instead, we have waves in which there are both electric and magnetic fields,
such as the sinusoidal one shown in the figure. Maxwell proved that such
waves were a direct consequence of his equations, and derived their properties
mathematically. The derivation would be beyond the mathematical level
of this book, so we will just state the results.
A sinusoidal electromagnetic wave has the geometry shown in the figure
above. The E and B fields are perpendicular to the direction of motion, and
are also perpendicular to each other. If you look along the direction of
motion of the wave, the B vector is always 90 degrees clockwise from the E
vector. The magnitudes of the two fields are related by the equation
|E|=c|B|.
How is an electromagnetic wave created? It could be emitted, for
example, by an electron orbiting an atom or currents going back and forth
in a transmitting antenna. In general any accelerating charge will create an
electromagnetic wave, although only a current that varies sinusoidally with
time will create a sinusoidal wave. Once created, the wave spreads out
through space without any need for charges or currents along the way to
keep it going. As the electric field oscillates back and forth, it induces the
magnetic field, and the oscillating magnetic field in turn creates the electric
field. The whole wave pattern propagates through empty space at a velocity
c=3.0×108 m/s, which is related to the constants k and mo by c= 4 p  k / mo .
Polarization
Two electromagnetic waves traveling in the same direction through
space can differ by having their electric and magnetic fields in different
directions, a property of the wave called its polarization.
Light is an electromagnetic wave
Once Maxwell had derived the existence of electromagnetic waves, he
became certain that they were the same phenomenon as light. Both are
transverse waves (i.e. the vibration is perpendicular to the direction the
wave is moving), and the velocity is the same. He is said to have gone for a
walk with his wife one night and told her that she was the only other person
in the world who knew what starlight really was.
direction of motion of wave
E E E
E E
B
B
B
B B
B
E
plane of vibration
of magnetic field
plane of
vibration
of electric
field
Chapter 6 Electromagnetism
137
103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13
wavelength (m)
105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
frequency (Hz)
radio
microwaves
infrared
visible light
red violet
x-rays gamma rays
ultraviolet
the electromagnetic
spectrum
Heinrich Hertz (for whom the unit of frequency is named) verified
Maxwell’s ideas experimentally. Hertz was the first to succeed in producing,
detecting, and studying electromagnetic waves in detail using antennas and
electric circuits. To produce the waves, he had to make electric currents
oscillate very rapidly in a circuit. In fact, there was really no hope of
making the current reverse directions at the frequencies of 1015 Hz possessed
by visible light. The fastest electrical oscillations he could produce
were 109 Hz, which would give a wavelength of about 30 cm. He succeeded
in showing that, just like light, the waves he produced were polarizable,
and could be reflected and refracted (i.e. bent, as by a lens), and he
built devices such as parabolic mirrors that worked according to the same
optical principles as those employing light. Hertz’s results were convincing
evidence that light and electromagnetic waves were one and the same.
The electromagnetic spectrum
Today, electromagnetic waves with frequencies in the range employed
by Hertz are known as radio waves. Any remaining doubts that the “Hertzian
waves,” as they were then called, were the same type of wave as light
waves were soon dispelled by experiments in the whole range of frequencies
in between, as well as the frequencies outside that range. In analogy to the
spectrum of visible light, we speak of the entire electromagnetic spectrum,
of which the visible spectrum is one segment.
The terminology for the various parts of the spectrum is worth memorizing,
and is most easily learned by recognizing the logical relationships
between the wavelengths and the properties of the waves with which you are
already familiar. Radio waves have wavelengths that are comparable to the
size of a radio antenna, i.e. meters to tens of meters. Microwaves were
named that because they have much shorter wavelengths than radio waves;
when food heats unevenly in a microwave oven, the small distances between
neighboring hot and cold spots is half of one wavelength of the standing
wave the oven creates. The infrared, visible, and ultraviolet obviously have
much shorter wavelengths, because otherwise the wave nature of light
would have been as obvious to humans as the wave nature of ocean waves.
To remember that ultraviolet, x-rays, and gamma rays all lie on the shortwavelength
side of visible, recall that all three of these can cause cancer. (As
we’ll discuss later in the course, there is a basic physical reason why the
cancer-causing disruption of DNA can only be caused by very shortwavelength
electromagnetic waves. Contrary to popular belief, microwaves
cannot cause cancer, which is why we have microwave ovens and not x-ray
ovens!)
Section 6.4 Electromagnetic Waves
138
6.5 Calculating Energy in Fields
We have seen that the energy stored in a wave (actually the energy
density) is typically proportional to the square of the wave’s amplitude.
Fields of force can make wave patterns, for which we might expect the same
to be true. This turns out to be true not only for wave-like field patterns but
for all fields:
energy stored in the gravitational field per m3 = – 1
8pG
g 2
energy stored in the electric field per m3 = 1
8pk
E 2
energy stored in the magnetic field per m3 = 1
2mo
B 2
Although funny factors of 8p and the plus and minus signs may have
initially caught your eye, they are not the main point. The important idea is
that the energy density is proportional to the square of the field strength in
all three cases. We first give a simple numerical example and work a little on
the concepts and then turn our attention to the factors out in front.
Example: Getting killed by a solenoid
Solenoids are very common electrical devices, but they can
be a hazard to someone who is working on them. Imagine a
solenoid that initially has a DC current passing through it. The
current creates a magnetic field inside and around it, which
contains energy. Now suppose that we break the circuit. Since
there is no longer a complete circuit, current will quickly stop
flowing, and the magnetic field will collapse very quickly. The field
had energy stored in it, and even a small amount of energy can
create a dangerous power surge if released over a short enough
time interval. It is prudent not to fiddle with a solenoid that has
current flowing through it, since breaking the circuit could be
hazardous to your health.
As a typical numerical estimate, let’s assume a 40 cm x 40
cm x 40 cm solenoid with an interior magnetic field of 1.0 T (quite
a strong field). For the sake of this rough estimate, we ignore the
exterior field, which is weak, and assume that the solenoid is
cubical in shape. The energy stored in the field is
(energy per unit volume)(volume)
= 1
2mo
B 2V
= 3×10 4 J
That’s a lot of energy!
Chapter 6 Electromagnetism
139
In chapter 5 when we discussed the original reason for introducing the
concept of a field of force, a prime motivation was that otherwise there was
no way to account for the energy transfers involved when forces were
delayed by an intervening distance. We used to think of the universe’s
energy as consisting of
kinetic energy
+ gravitational potential energy based on the distances between
objects that interact gravitationally
+ electric potential energy based on the distances between
objects that interact electrically
+ magnetic potential energy based on the distances between
objects that interact magnetically
but in nonstatic situations we must use a different method:
kinetic energy
+ gravitational potential energy stored in gravitational fields
+ electric potential energy stored in electric fields
+ magnetic potential stored in magnetic fields
Surprisingly, the new method still gives the same answers for the static cases.
Example: energy stored in a capacitor
A pair of parallel metal plates, seen from the side in figures
(a) and (b), can be used to store electrical energy by putting
positive charge on one side and negative charge on the other.
Such a device is called a capacitor. (We have encountered such
an arrangement previously, but there its purpose was to deflect a
beam of electrons, not to store energy.)
In the old method of describing potential energy, (a), we think
in terms of the mechanical work that had to be done to separate
the positive and negative charges onto the two plates, working
against their electrical attraction. The new description, (b),
attributes the storage of energy to the newly created electric field
occupying the volume between the plates. Since this is a static
case, both methods give the same, correct answer.
+ + + + + + +
– – – – – – –
(a) (b)
Section 6.5 Calculating Energy in Fields
140
Example: potential energy of a pair of opposite charges
Imagine taking two opposite charges, (c), that were initially
far apart and allowing them to come together under the influence
of their electrical attraction.
According to the old method, potential energy is lost because
the electric force did positive work as it brought the charges
together. (This makes sense because as they come together and
accelerate it is their potential energy that is being lost and
converted to kinetic energy.)
By the new method, we must ask how the energy stored in
the electric field has changed. In the region indicated approximately
by the shading in the figure, the superposing fields of the
two charges undergo partial cancellation because they are in
opposing directions. The energy in the shaded region is reduced
by this effect. In the unshaded region, the fields reinforce, and
the energy is increased.
It would be quite a project to do an actual numerical calculation
of the energy gained and lost in the two regions (this is a
case where the old method of finding energy gives greater ease
of computation), but it is fairly easy to convince oneself that the
energy is less when the charges are closer. This is because
bringing the charges together shrinks the high-energy unshaded
region and enlarges the low-energy shaded region.
Example: energy in an electromagnetic wave
The old method would give zero energy for a region of space
containing an electromagnetic wave but no charges. That would
be wrong! We can only use the old method in static cases.
Now let’s give at least some justification for the other features of the
three expressions for energy density, – 1
8pG
g 2 , 1
8pk
E 2
, and 1
2mo
B 2
,
besides the proportionality to the square of the field strength.
First, why the different plus and minus signs? The basic idea is that the
signs have to be opposite in the gravitational and electric cases because there
is an attraction between two positive masses (which are the only kind that
exist), but two positive charges would repel. Since we’ve already seen
examples where the positive sign in the electric energy makes sense, the
gravitational energy equation must be the one with the minus sign.

+
(c)
Chapter 6 Electromagnetism
141
It may also seem strange that the constants G, k, and mo are in the
denominator. They tell us how strong the three different forces are, so
shouldn’t they be on top? No. Consider, for instance, an alternative universe
in which gravity is twice as strong as in ours. The numerical value of G is
doubled. Because G is doubled, all the gravitational field strengths are
doubled as well, which quadruples the quantity g 2 . In the expression
– 1
8pG
g 2 , we have quadrupled something on top and doubled something
on the bottom, which makes the energy twice as big. That makes perfect
sense.
Discussion Questions
A. The figure shows a positive charge in the gap between two capacitor plates.
Compare the energy of the electric fields in the two cases. Does this agree
with what you would have expected based on your knowledge of electrical
forces?
(a) (b)
+ + + + + + +
– – – – – – –
+
+ + + + + + +
– – – – – – –
+
B. Criticize the following statement: “A solenoid makes a charge in the space
surrounding it, which dissipates when you release the energy.”
C. In the example on the previous page, I argued that the fields surrounding a
positive and negative charge contain less energy when the charges are closer
together. Perhaps a simpler approach is to consider the two extreme possibilities:
the case where the charges are infinitely far apart, and the one in which
they are at zero distance from each other, i.e. right on top of each other. Carry
out this reasoning for the case of (1) a positive charge and a negative charge
of equal magnitude, (2) two positive charges of equal magnitude, (3) the
gravitational energy of two equal masses.
Section 6.5 Calculating Energy in Fields
142
6.6* Symmetry and Handedness
The physicist Richard Feynman helped to get me hooked on physics
with an educational film containing the following puzzle. Imagine that you
establish radio contact with an alien on another planet. Neither of you even
knows where the other one’s planet is, and you aren’t able to establish any
landmarks that you both recognize. You manage to learn quite a bit of each
other’s languages, but you’re stumped when you try to establish the definitions
of left and right (or, equivalently, clockwise and counterclockwise). Is
there any way to do it?
If there was any way to do it without reference to external landmarks,
then it would imply that the laws of physics themselves were asymmetric,
which would be strange. Why should they distinguish left from right? The
gravitational field pattern surrounding a star or planet looks the same in a
mirror, and the same goes for electric fields. However, the field patterns
shown in section 6.2 seem to violate this principle, but do they really?
Could you use these patterns to explain left and right to the alien? In fact,
the answer is no. If you look back at the definition of the magnetic field in
section 6.1, it also contains a reference to handedness: the counterclockwise
direction of the loop’s current as viewed along the magnetic field. The aliens
might have reversed their definition of the magnetic field, in which case
their drawings of field patterns would look like mirror images of ours.
Until the middle of the twentieth century, physicists assumed that any
reasonable set of physical laws would have to have this kind of symmetry
between left and right. An asymmetry would be grotesque. Whatever their
aesthetic feelings, they had to change their opinions about reality when
experiments showed that the weak nuclear force (section 2.6) violates rightleft
symmetry! It is still a mystery why right-left symmetry is observed so
scrupulously in general, but is violated by one particular type of physical
process.
Chapter 6 Electromagnetism
143
Summary
Selected Vocabulary
magnetic field ……………………. a field of force, defined in terms of the torque exerted on a test dipole
magnetic dipole …………………. an object, such as a current loop, an atom, or a bar magnet, that
experiences torques due to magnetic forces; the strength of magnetic
dipoles is measured by comparison with a standard dipole consisting of
a square loop of wire of a given size and carrying a given amount of
current
induction …………………………. the production of an electric field by a changing magnetic field, or
vice-versa
Notation
B ………………………………… the magnetic field
Dm ………………………………. magnetic dipole moment
Summary
Magnetism is an interaction of moving charges with other moving charges. The magnetic field is defined in
terms of the torque on a magnetic test dipole. It has no sources or sinks; magnetic field patterns never converge
on or diverge from a point.
The magnetic and electric fields are intimately related. The principle of induction states that any changing
electric field produces a magnetic field in the surrounding space, and vice-versa. These induced fields tend to
form whirlpool patterns.
The most important consequence of the principle of induction is that there are no purely magnetic or
purely electric waves. Disturbances in the electrical and magnetic fields propagate outward as combined
magnetic and electric waves, with a well-defined relationship between their magnitudes and directions. These
electromagnetic waves are what light is made of, but other forms of electromagnetic waves exist besides
visible light, including radio waves, x-rays, and gamma rays.
Fields of force contain energy. The density of energy is proportional to the square of the magnitude of the
field. In the case of static fields, we can calculate potential energy either using the previous definition in terms
of mechanical work or by calculating the energy stored in the fields. If the fields are not static, the old method
gives incorrect results and the new one must be used.
Summary
144
Homework Problems
1. In an electrical storm, the cloud and the ground act like a parallel-plate
capacitor, which typically charges up due to frictional electricity in
collisions of ice particles in the cold upper atmosphere. Lightning occurs
when the magnitude of the electric field builds up to a critical value, Ec, at
which air is ionized.
(a) Treat the cloud as a flat square with sides of length L. If it is at a height
h above the ground, find the amount of energy released in the lightning
strike.
(b) Based on your answer from part (a), which is more dangerous, a
lightning strike from a high-altitude cloud or a low-altitude one?
(c) Make an order-of-magnitude estimate of the energy released by a
typical lightning bolt, assuming reasonable values for its size and altitude.
Ec is about 106 V/m.
2. The neuron in the figure has been drawn fairly short, but some neurons
in your spinal cord have tails (axons) up to a meter long. The inner and
outer surfaces of the membrane act as the “plates” of a capacitor. (The fact
that it has been rolled up into a cylinder has very little effect.) In order to
function, the neuron must create a voltage difference V between the inner
and outer surfaces of the membrane. Let the membrane’s thickness, radius,
and length be t, r, and L.
(a) Calculate the energy that must be stored in the electric field for the
neuron to do its job. (In real life, the membrane is made out of a substance
called a dielectric, whose electrical properties increase the amount of
energy that must be stored. For the sake of this analysis, ignore this fact.)
[Hint: The volume of the membrane is essentially the same as if it was
unrolled and flattened out.]
(b) An organism’s evolutionary fitness should be better if it needs less
energy to operate its nervous system. Based on your answer to part (a),
what would you expect evolution to do to the dimensions t and r? What
other constraints would keep these evolutionary trends from going too far?
3. Consider two solenoids, one of which is smaller so that it can be put
inside the other. Assume they are long enough so that each one only
contributes significantly to the field inside itself, and the interior fields are
nearly uniform. Consider the configuration where the small one is inside
the big one with their currents circulating in the same direction, and a
second configuration in which the currents circulate in opposite directions.
Compare the energies of these configurations with the energy when
the solenoids are far apart. Based on this reasoning, which configuration is
stable, and in which configuration will the little solenoid tend to get
twisted around or spit out? [Hint: A stable system has low energy; energy
would have to be added to change its configuration.]
Problem 2.
S A solution is given in the back of the book. « A difficult problem.
3 A computerized answer check is available. ò A problem that requires calculus.
Chapter 6 Electromagnetism
145
4. The figure shows a nested pair of circular wire loops used to create
magnetic fields. (The twisting of the leads is a practical trick for reducing
the magnetic fields they contribute, so the fields are very nearly what we
would expect for an ideal circular current loop.) The coordinate system
below is to make it easier to discuss directions in space. One loop is in the
y-z plane, the other in the x-y plane. Each of the loops has a radius of 1.0
cm, and carries 1.0 A in the direction indicated by the arrow.
(a3) Using the equation in optional section 6.2, calculate the magnetic
field that would be produced by one such loop, at its center.
(b) Describe the direction of the magnetic field that would be produced,
at its center, by the loop in the x-y plane alone.
(c) Do the same for the other loop.
(d3) Calculate the magnitude of the magnetic field produced by the two
loops in combination, at their common center. Describe its direction.
5. (a) Show that the quantity 4 p  k / mo has units of velocity.
(b) Calculate it numerically and show that it equals the speed of light.
(c) Prove that in an electromagnetic wave, half the energy is in the electric
field and half in the magnetic field.
6. One model of the hydrogen atom has the electron circling around the
proton at a speed of 2.2×106 m/s, in an orbit with a radius of 0.05 nm.
(Although the electron and proton really orbit around their common
center of mass, the center of mass is very close to the proton, since it is
2000 times more massive. For this problem, assume the proton is stationary.)
In that previous homework problem, you calculated the electric
current created.
(a3) Now estimate the magnetic field created at the center of the atom by
the electron. We are treating the circling electron as a current loop, even
though it’s only a single particle.
(b) Does the proton experience a nonzero force from the electron’s
magnetic field? Explain.
(c) Does the electron experience a magnetic field from the proton? Explain.
(d) Does the electron experience a magnetic field created by its own
current? Explain.
(e3) Is there an electric force acting between the proton and electron? If
so, calculate it.
(f ) Is there a gravitational force acting between the proton and electron? If
so, calculate it.
(g) An inward force is required to keep the electron in its orbit — otherwise
it would obey Newton’s first law and go straight, leaving the atom.
Based on your answers to the previous parts, which force or forces (electric,
magnetic and gravitational) contributes significantly to this inward
force?
[Based on a problem by Arnold Arons.]
Problem 4.
x
y
z
I
I
Homework Problems
146
7. [You need to have read optional section 6.2 to do this problem.]
Suppose a charged particle is moving through a region of space in which
there is an electric field perpendicular to its velocity vector, and also a
magnetic field perpendicular to both the particle’s velocity vector and the
electric field. Show that there will be one particular velocity at which the
particle can be moving that results in a total force of zero on it. Relate this
velocity to the magnitudes of the electric and magnetic fields. (Such an
arrangement, called a velocity filter, is one way of determining the speed of
an unknown particle.)
8. If you put four times more current through a solenoid, how many times
more energy is stored in its magnetic field?
9 «. Suppose we are given a permanent magnet with a complicated,
asymmetric shape. Describe how a series of measurements with a magnetic
compass could be used to determine the strength and direction of its
magnetic field at some point of interest. Assume that you are only able to
see the direction to which the compass needle settles; you cannot measure
the torque acting on it.
10. Consider two solenoids, one of which is smaller so that it can be put
inside the other. Assume they are long enough to act like ideal solenoids,
so that each one only contributes significantly to the field inside itself, and
the interior fields are nearly uniform. Consider the configuration where
the small one is partly inside and partly hanging out of the big one, with
their currents circulating in the same direction. Their axes are constrained
to coincide.
(a) Find the magnetic potential energy as a function of the length x of the
part of the small solenoid that is inside the big one. (Your equation will
include other relevant variables describing the two solenoids.)
(b) Based on your answer to part (a), find the force acting between the
solenoids.
11. Four long wires are arranged, as shown, so that their cross-section
forms a square, with connections at the ends so that current flows through
all four before exiting.
I
I
Note that the current is to the right in the two back wires, but to the left
in the front wires. If the dimensions of the cross-sectional square (height
and front-to-back) are b, find the magnetic field (magnitude and direction)
along the long central axis.
Chapter 6 Electromagnetism
147
12.ò« To do this problem, you need to understand how to do volume
integrals in cylindrical and spherical coordinates. (a) Show that if you try
to integrate the energy stored in the field of a long, straight wire, the
resulting energy per unit length diverges both at r®0 and r®¥. Taken at
face value, this would imply that a certain real-life process, the initiation of
a current in a wire, would be impossible, because it would require changing
from a state of zero magnetic energy to a state of infinite magnetic
energy. (b) Explain why the infinities at r®0 and r®¥ don’t really
happen in a realistic situation. (c) Show that the electric energy of a point
charge diverges at r®0, but not at r®¥.
A remark regarding part (c): Nature does seem to supply us with particles
that are charged and pointlike, e.g. the electron, but one could argue that
the infinite energy is not really a problem, because an electron traveling
around and doing things neither gains nor loses infinite energy; only an
infinite change in potential energy would be physically troublesome.
However, there are real-life processes that create and destroy pointlike
charged particles, e.g. the annihilation of an electron and antielectron with
the emission of two gamma rays. Physicists have, in fact, been struggling
with infinities like this since about 1950, and the issue is far from resolved.
Some theorists propose that apparently pointlike particles are actually not
pointlike: close up, an electron might be like a little circular loop of string.
13 S. The purpose of this problem is to find the force experienced by a
straight, current-carrying wire running perpendicular to a uniform
magnetic field. (a) Let A be the cross-sectional area of the wire, n the
number of free charged particles per unit volume, q the charge per particle,
and v the average velocity of the particles. Show that the current is
I=Avnq. (b) Show that the magnetic force per unit length is AvnqB. (c)
Combining these results, show that the force on the wire per unit length is
equal to IB.
14 S. Suppose two long, parallel wires are carrying current I1 and I2. The
currents may be either in the same direction or in opposite directions. (a)
Using the information from section 6.2, determine under what conditions
the force is attractive, and under what conditions it is repulsive. Note that,
because of the difficulties explored in problem 12 above, it’s possible to get
yourself tied up in knots if you use the energy approach of section 6.5. (b)
Starting from the result of problem 13, calculate the force per unit length.
Homework Problems
148
Problem 15.
15. The figure shows cross-sectional views of two cubical capacitors, and a
cross-sectional view of the same two capacitors put together so that their
interiors coincide. A capacitor with the plates close together has a nearly
uniform electric field between the plates, and almost zero field outside;
these capacitors don’t have their plates very close together compared to the
dimensions of the plates, but for the purposes of this problem, assume that
they still have approximately the kind of idealized field pattern shown in
the figure. Each capacitor has an interior volume of 1.00 m3, and is
charged up to the point where its internal field is 1.00 V/m. (a) Calculate
the energy stored in the electric field of each capacitor when they are
separate. (b) Calculate the magnitude of the interior field when the two
capacitors are put together in the manner shown. Ignore effects arising
from the redistribution of each capacitor’s charge under the influence of
the other capacitor. (c) Calculate the energy of the put-together configuration.
Does assembling them like this release energy, consume energy, or
neither?
16. Section 6.2 states the following rule:
For a positively charged particle, the direction of the F vector is the
one such that if you sight along it, the B vector is clockwise from the
v vector.
Make a three-dimensional model of the three vectors using pencils or
rolled-up pieces of paper to represent the vectors assembled with their tails
together. Now write down every possible way in which the rule could be
rewritten by scrambling up the three symbols F, B, and v. Referring to
your model, which are correct and which are incorrect?
17 «. Prove that any two planar current loops with the same value of IA
will experience the same torque in a magnetic field, regardless of their
shapes. In other words, the dipole moment of a current loop can be
defined as IA, regardless of whether its shape is a square.
18. A Helmholtz coil is defined as a pair of identical circular coils separated
by a distance, h, equal to their radius, b. (Each coil may have more
than one turn of wire.) Current circulates in the same direction in each
coil, so the fields tend to reinforce each other in the interior region. This
configuration has the advantage of being fairly open, so that other apparatus
can be easily placed inside and subjected to the field while remaining
visible from the outside. The choice of h=b results in the most uniform
possible field near the center. (a) Find the percentage drop in the field at
the center of one coil, compared to the full strength at the center of the
whole apparatus. (b) What value of h (not equal to b) would make this
percentage difference equal to zero?
19 S. (a) In the photo of the vacuum tube apparatus in section 6.2, infer
the direction of the magnetic field from the motion of the electron beam.
(b) Based on your answer to a, find the direction of the currents in the
coils. (c) What direction are the electrons in the coils going? (d) Are the
currents in the coils repelling or attracting the currents consisting of the
beam inside the tube? Compare with part a of problem 14.
20 «S. In the photo of the vacuum tube apparatus in section 6.2, an
approximately uniform magnetic field caused circular motion. Is there any
other possibility besides a circle? What can happen in general?
Chapter 6 Electromagnetism
h
b
Problem 18.
149
Exercises
Exercise 1A: Electric and Magnetic Forces
In this exercise, you are going to investigate the forces that can occur among the following objects:
nails
magnets
small bits of paper
specially prepared pieces of scotch tape:
Take a piece of scotch tape, bend one end over to form a handle that won’t stick to your
hand, and stick it on a desk. Make a handle on a second piece, and lay it right on top of
the first one. Now pull the two pieces off the desk and separate them.
Your goal is to address the following questions experimentally:
1. Do the forces get weaker with distance? Do they have some maximum range? Is there some range
at which they abruptly cut off?
2. Can the forces be blocked or shielded against by putting your hand or your calculator in the way?
Try this with both electric and magnetic forces, and with both repulsion and attraction.
3. Are the forces among these objects gravitational?
4. Of the many forces that can be observed between different pairs of objects, is there any natural way
to classify them into general types of forces?
5. Do the forces obey Newton’s third law?
6. Do ordinary materials like wood or paper participate in these forces?
150
Exercise 4A: The Loop and Junction Rules
Apparatus
DC power supply
multimeter
resistors
1. The junction rule
Construct a circuit like this one, using the power
supply as your voltage source. To make things
more interesting, don’t use equal resistors. Use
nice big resistors (say 100 kW to 1 MW) — this will
ensure that you don’t burn up the resistors, and
that the multimeter’s small internal resistance
when used as an ammeter is negligible in comparison.
R1
R2
Insert your multimeter in the circuit to measure all
three currents that you need in order to test the
junction rule.
2. The loop rule
Now come up with a circuit to test the loop rule.
Since the loop rule is always supposed to be true,
it’s hard to go wrong here! Make sure you have at
least three resistors in a loop, and make sure you
hook in the power supply in a way that creates
non-zero voltage differences across all the resistors.
Measure the voltage differences you need to
measure to test the loop rule. Here it is best to
use fairly small resistances, so that the
multimeter’s large internal resistance when used
in parallel as a voltmeter will not significantly reduce
the resistance of the circuit. Do not use resistances
of less than about 100 W, however, or
you may blow a fuse or burn up a resistor.
151
Exercise 4B: Reasoning About Circuits
The questions in this exercise can all be solved
using some combination of the following approaches:
a) There is constant voltage throughout any
conductor.
b) Ohm’s law can be applied to any part of a
circuit.
c) Apply the loop rule.
d) Apply the junction rule.
It may be helpful to perform the actual experiments
after having discussed the questions. Note, however,
that some of the experiments may cause
sparks, burn out your battery, or cause the wires
to become hot enough to burn you.
1. A wire is added in parallel with one bulb.
6 V
Which reasoning is correct?
• Each bulb still has 3 V across it, so both bulbs
are still lit up.
• All parts of a wire are at the same voltage, and
there is now a wire connection from one side of
the right-hand bulb to the other. The right-hand
bulb has no potential difference across it, so it
goes out.
2
6 V 6 V
Which reasoning is correct?
• Each bulb now has its sides connected to the
two terminals of the battery, so each one now
has 6 V across it instead of 3 V. They both get
brighter.
• Just as in the original circuit, the current goes
through one bulb, then the other. It’s just that
now the current goes in a figure-8 pattern. The
bulbs glow the same as before.
3. A wire is added as shown to the original circuit.
What is wrong with the following reasoning?
The top bulb will go out, because its two sides
are now connected with wire, so there will be no
voltage difference across it. The other bulbs will
not be affected.
4. A wire is added as shown to the original circuit.
What is wrong with the following reasoning?
The current flows out of the right-hand, positive
terminal of the battery. When it hits the bottom
junction, some of it will go left and some will keep
going up The part that goes up lights the top
bulb. The part that turns left then follows the
path of least resistance, going through the new
wire instead of the right-hand bulb. The top bulb
stays lit, the bottom one goes out, and the left
bulb stays the same.
This exercise is based on materials by Eric Mazur,
Lillian McDermott, and Arnold Arons.
152
153
Exercise 5A – Field Vectors
Apparatus
2 solenoids
2 DC power supplies
2 ammeters
compass
ruler
cut-off plastic cup
At this point you’ve studied the gravitational field, g, and the electric field, E, but not the magnetic field,
B. However, they all have some of the same mathematical behavior: they act like vectors. Furthermore,
magnetic fields are the easiest to manipulate in the lab. Manipulating gravitational fields directly
would require futuristic technology capable of moving planet-sized masses around! Playing with electric
fields is not as ridiculously difficult, but static electric charges tend to leak off through your body to
ground, and static electricity effects are hard to measure numerically. Magnetic fields, on the other
hand, are easy to make and control. Any moving charge, i.e. any current, makes a magnetic field.
A practical device for making a strong magnetic field is simply a coil of wire, formally known as a
solenoid. The field pattern surrounding the solenoid gets stronger or weaker in proportion to the amount
of current passing through the wire. Your setup will consist of two solenoids, each driven by a power
supply, with an ammeter to measure the current in each one.
1. With a single solenoid turned on and laid with its axis horizontal, use a magnetic compass to explore
the field pattern inside and outside it. The compass shows you the field vector’s direction, but not its
magnitude, at any point you choose. Note that the field the compass experiences is a combination
(vector sum) of the solenoid’s field and the earth’s field.
2. What happens when you bring the compass extremely far away from the solenoid?
What does this tell you about the way the solenoid’s field varies with distance?
Thus although the compass doesn’t tell you the field vector’s magnitude numerically, you can get at
least some general feel for how it depends on distance.
3. Make a sea-of-arrows sketch of the magnetic field in the horizontal plane containing the solenoid’s
axis. The length of each arrow should at least approximately reflect the strength of the magnetic field
at that point.
Does the field seem to have sources or sinks?
154
4. What do you think would happen to your sketch if you cut the current in half?
What will happen if you reverse the wires?
Try it.
5. Now turn on both solenoids. You are going to measure what happens when their two fields combine
in the same region of space. As you’ve seen already, the solenoids’ nearby fields are much stronger
than the earth’s field; so although we now theoretically have three fields involved (the earth’s plus the
two solenoids’), it will be safe to ignore the earth’s field. The basic idea here is to place the solenoids
with their axes at some angle to each other, and put the compass at the intersection of their axes, so
that it is the same distance from each solenoid. Since the geometry doesn’t favor either solenoid, the
only factor that would make one solenoid influence the compass more than the other is current. You
can use the cut-off plastic cup as a little platform to bring the compass up to the same level as the
solenoids’ axes.
a)What do you think will happen with the solenoids’ axes at 90 degrees to each other, and equal
currents? Try it. Now represent the vector addition of the two magnetic fields with a diagram. Check
your diagram with your instructor to make sure you’re on the right track.
b)Now try to make a similar diagram of what would happen if you switched the wires on one of the
solenoids.
After predicting what the compass will do, try it and see if you were right.
c)Now suppose you were to go back to the arrangement you had in #1, but you changed one of the
currents to half its former value. Make a vector addition diagram, and use trig to predict the angle.
Try it.
d)Now try an example where the currents are unequal, and the solenoids’ axes are at some angle
other than 90 degrees. Calculate what will happen:
Try it.
155
Solutions to Selected
Problems
Chapter 2
6. (a) In the reaction p+e– ® n+n, the charges on the
left are e+(–e)=0, and both charges on the right are
zero. (b) The neutrino has negligible mass. The
masses on the left add up to less than the mass of
the neutrino on the right, so energy would be
required from an external source in order to make
this reaction happen.
Chapter 3
12. Dt = Dq / I = e/I = 0.160 ms.
13. (a) The change in PE is eV, so the KE gained is
(1/2)mv2=eV. Solving for v and plugging in numbers,
we get 5.9×107 m/s. This is about 20% of the speed
of light, so the nonrelativistic assumption was good
to at least a rough approximation.
Chapter 4
11. In series, they give 11 kW. In parallel, they give
(1/1 kW+1/10 kW) –1 = 9 kW.
12. The actual shape is irrelevant; all we care about
it what’s connected to what. Therefore, we can draw
the circuit flattened into a plane. Every vertex of the
tetrahedron is adjacent to every other vertex, so any
two vertices to which we connect will give the same
resistance. Picking two arbitrarily, we have this:
*
This is unfortunately a circuit that cannot be converted
into parallel and series parts, and that’s what
makes this a hard problem! However, we can
recognize that by symmetry, there is zero current in
the resistor marked with an asterisk. Eliminating this
one, we recognize the whole arrangement as a triple
parallel circuit consisting of resistances R, 2R, and
2R. The resulting resistance is R/2.
Chapter 5
9. Proceeding as suggested in the hint, we form
Solutions to Selected Problems
concentric rings, each one extending from radius b to
radius b+db.The area of such a ring equals its
circumference multipled by db, which is (2pb)db. Its
charge is thus 2psb db. Plugging this in to the
expression from problem 8 gives a contribution to the
field dE=2psbka(a2+b2) –3/2db. The total field is found
by integrating this expression. The relevant integral
can be found in a table.
E =

2psbka a2 + b 2 – 3 / 2
db
0
¥
=

2pska b a2 + b 2 – 3 / 2
db
0
¥
=

2pska – a2 + b 2 – 1 / 2
b =0
¥
= 2psk
11. Let the square’s sides be of length a. The field at
the center is the vector sum of the fields that would
have been produced individually by the three
charges. Each of these individual fields is kq/r 2,
where r
1= a / 2 for the two charges q
1, and r
2=a/2 for
q2
. Vector addition can be done by adding components.
Let x be horizontal and y vertical. The y
components cancel by symmetry. The sum of the x
components is
Ex
= kq 1 / r 1
2 cos 45° + kq 1 / r 1
2 cos 45°
– kq 2 / r 2
2 .
Substituting cos 45°=1 / 2 and setting this whole
expression equal to zero, we find q
2/ q
1=1 / 2 .
Chapter 6
13. (a) Current means how much charge passes by a
given point per unit time. During a time interval Dt , all
the charge carriers in a certain region behind the
point will pass by. This region has length vDt and
cross-sectional area A, so its volume is AvDt, and the
amount of charge in it is AvnqDt. To find the current,
we divide this amount of charge by Dt, giving I=Avnq.
(b) A segment of the wire of length L has a force QvB
156 Solutions to Selected Problems
acting on it, where Q=ALnq is the total charge of the
moving charge carriers in that part of the wire. The
force per unit length is ALnqvB/L=AnqvB. (c) Dividing
the two results gives F/L=IB.
14. (a) The figure shows the case where the currents
are in opposite directions.
I2
B
I1
F
The field vector shown is one made by wire 1, which
causes an effect on wire 2. It points up because wire
1’s field pattern is clockwise as view from along the
direction of current I1. For simplicity, let’s assume that
the current I2 is made by positively charged particles
moving in the direction of the current. (You can check
that the final result would be the same if they were
negatively charged, as would actually be the case in
a metal wire.) The force on one of these positively
charged particles in wire 2 is supposed to have a
direction such that when you sight along it, the B
vector is clockwise from the v vector. This can only
be accomplished if the force on the particle in wire 2
is in the direction shown. Wire 2 is repelled by wire 1.
To verify that wire 1 is also repelled by wire 2, we can
either go through the same type of argument again,
or we can simply apply Newton’s third law.
Simialar arguments show that the force is attractive if
the currents are in the same direction.
(b) The force on wire 2 is F/L=I2B, where B=moI1/2pr is
the field made by wire 1 and r is the distance between
the wires. The result is
F/L = moI1I2/2pr .
19. (a) Based on our knowledge of the field pattern of
a current-carrying loop, we know that the magnetic
field must be either into or out of the page. This
makes sense, since that would mean the field is
always perpendicular to the plane of the electrons’
motion; if it was in their plane of motion, then the
angle between the v and B vectors would be changing
all the time, but we see no evidence of such
behavior. With the field turned on, the force vector is
apparently toward the center of the circle. Let’s
analyze the force at the moment when the electrons
have started moving, which is at the right side of the
circle. The force is to the left. Since the electrons are
negatively charged particles, we know that if we sight
along the force vector, the B vector must be counterclockwise
from the v vector. The magnetic field must
be out of the page. (b) Looking at the figure earlier in
section 6.2 that shows the field pattern of a circular
loop of wire, we can tell that the current in the coils
must be counterclockwise as viewed from the perspective
of the camera. (c) Electrons are negatively
charged, so to produce a counterclockwise current,
the electrons in the coils must be going clockwise. (d)
The current in the coils is keep the electrons in the
beam from going straight, i.e. the force is a repulsion.
This makes sense by comparison with problem 14:
the coil currents and vacuum tube currents are
counterrotating, which causes a repulsion.
20. Yes. For example, the force vanishes if the
particle’s velocity is parallel to the field, so if the
beam had been launched parallel to the field, it would
have gone in a straight line rather than a circle. In
general, any component of the velocity vector that is
out of the plane perpendicular to the field will remain
constant, so the motion can be helical.
157
Glossary
Alpha decay. The radioactive decay of a nucleus via
emission of an alpha particle.
Alpha particle. A form of radioactivity consisting of
helium nuclei.
Ammeter. A device for measurin electrical current.
Ampere. The metric unit of current, one coulomb
pe second; also “amp.”
Atom. The basic unit of one of the chemical
elements.
Atomic mass. The mass of an atom.
Atomic number. The number of protons in an
atom’s nucleus; determines what element it is.
Beta decay. The radioactive decay of a nucleus via
the reaction n ® p + e– + n or p ® n + e+ + n;
so called because an electron or antielectron is
also known as a beta particle.
Beta particle. A form of radioactivity consisting of
electrons.
Cathode ray. The mysterious ray that emanated
from the cathode in a vacuum tube; shown by
Thomson to be a stream of particles smaller
than atoms.
Charge. A numerical rating of how strongly an
object participates in electrical forces.
Circuit. An electrical device in which charge can
come back to its starting point and be recycled
rather than getting stuck in a dead end.
Coulomb (C). The unit of electrical charge.
Current. The rate at which charge crosses a certain
boundary.
Electric dipole. An object that has an imbalance
between positive charge on one side and negative
charge on the other; an object that will
experience a torque in an electric field.
Electric field. The force per unit charge exerted on a
test charge at a given point in space.
Electrical force. One of the fundamental forces of
nature; a noncontact force that can be either
repulsive or attractive.
Electron. Thomson’s name for the particles of which a
cathode ray was made; a subatomic particle.
Field. A property of a point in space describing the forces
that would be exerted on a particle if it was there.
Fission. The radioactive decay of a nucleus by splitting
into two parts.
Fusion. A nuclear reaction in which two nuclei stick
together to form one bigger nucleus.
Gamma ray. Aform of radioactivity consisting of a very
high-frequency form of light.
Gravitational field. The force per unit mass exerted on a
test mass at a given point in space.
Induction. The production of an electric field by a
changing magnetic field, or vice-versa.
Ion. An electrically charged atom or molecule.
Isotope. One of the possible varieties of atoms of a given
element, having a certain number of neutrons.
Magnetic dipole. An object, such as a current loop, an
atom, or a bar magnet, that experiences torques due to
magnetic forces; the strength of magnetic dipoles is
measured by comparison with a standard dipole
consisting of a square loop of wire of a given size and
carrying a given amount of current.
Magnetic field. A field of force, defined in terms of the
torque exerted on a test dipole.
Mass number. The number of protons plus the number of
neutrons in a nucleus; approximately proportional to
its atomic mass.
Millirem. A unit for measuring a person’s exposure to
radioactivity; cf rem.
Molecule. A group of atoms stuck together.
Neutron. An uncharged particle, the other types that
nuclei are made of.
Ohm. The metric unit of electrical resistance, one volt per
ampere.
Ohmic. Describes a substance in which the flow of current
between two points is proportional to the voltage
difference between them.
Open circuit. A circuit that does not function because it
has a gap in it.
158
Proton. A positively charged particle, one of the types
that nuclei are made of.
Quantized. Describes quantity such as money or
electrical charge, that can only exist in certain
amounts.
Rem. A unit for measuring a person’s exposure to
radioactivity; cf millirem.
Resistance. The ratio of the voltage difference to the
current in an object made of an ohmic substance.
Short circuit. A circuit that does not function because
charge is given a low-resistance “shortcut” path that
it can follow, instead of the path that makes it do
something useful.
Sink. A point at which field vectors converge.
Source. A point from which field vectors diverge; often
used more inclusively to refer to points of either
convergence or divergence.
Strong nuclear force. The force that holds nuclei
together against electrical repulsion.
Volt. The metric unit of voltage, one joule per coulomb.
Voltage. Electrical potential energy per unit charge that
will be posessed by a charged particle at a certain
point in space.
Voltmeter. A device for measuring voltage differences.
Weak nuclear force. The force responsible for beta

Advertisements

6 thoughts on “electricity and magnatism

  1. man the content here is priceless! I do wish it was divided up into pages tho….I see that this was a recent creation so if you do divide it up please let me know I have people, fiends and such who would get a lot out of this material

  2. E=MC2, M=E/C2 it’s all relative. If I am everywhere and in everything at the same time. Everything and person is energy in some form. Speed up matter it releases & produces energy, slowdown energy & it becomes mass or a tangible substance ie.. the relationship between Ice and water. Energy can also be invisible but it’s there,it’s everywhere and in everthing. Answer: I’m pure energy. Who am I ??

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s